Vol. 11 No. 2 (2025): February
Open Access
Peer Reviewed

Comparison of Composting Results Using the Batu Terawang Method and Open Windrow Method

Authors

Ilham , Sri Sumiyati , Sudarno

DOI:

10.29303/jppipa.v11i2.8184

Published:

2025-02-25

Downloads

Abstract

Composting is a waste management process that converts organic material into humus that can be reused. Composting can be applied using several methods such as the open windrow method, this method is a way of making compost that will get sufficient aeration so that it will help the compost maturity process more quickly. The aim of this research is to compare the results of composting using the open brick method and open windrow based on chemical parameters. During the composting process, a different bioactivator was added to each compost, using two bioactivators, namely MoL and M-Bio, and periodic checks were carried out every three days during the six weeks of composting. Based on the comparison results, the C, P content and C/N ratio in the two methods produced content values ​​that were not significantly different, however, in the overlay brick method, the control compost was superior in terms of P content and C/N ratio. Meanwhile, the open windrow method has a consistent increase in C, P content and C/N ratio.

Keywords:

Brick method, Comparison, Composting

References

Afifah, N., Auvaria, S. W., Nengse, S., Utama, T. T., & Yusrianti, Y. (2021). Studi Komparasi Metode Pengomposan Secara Windrow, Bata Berongga Dan Vermikomposting. Jurnal Kesehatan Lingkungan: Jurnal Dan Aplikasi Teknik Kesehatan Lingkungan, 19(1), 121–128. https://doi.org/10.31964/jkl.v19i1.468

Ahmed, T., Noman, M., Qi, Y., Shahid, M., Hussain, S., Masood, H. A., Xu, L., Ali, H. M., Negm, S., El-Kott, A. F., Yao, Y., Qi, X., & Li, B. (2023). Fertilization of Microbial Composts: A Technology for Improving Stress Resilience in Plants. Plants, 12(20), 3550. https://doi.org/10.3390/plants12203550

Ayilara, M., Olanrewaju, O., Babalola, O., & Odeyemi, O. (2020). Waste Management through Composting: Challenges and Potentials. Sustainability, 12(11), 4456. https://doi.org/10.3390/su12114456

Chen, W., Modi, D., & Picot, A. (2023). Soil and Phytomicrobiome for Plant Disease Suppression and Management under Climate Change: A Review. Plants, 12(14), 2736. https://doi.org/10.3390/plants12142736

Cummings, J. A., Parker, I. M., & Gilbert, G. S. (2023). The Influence of Nitrogen and Phosphorus Addition on Growth of the Invasive C4 Grass Saccharum spontaneum. International Journal of Plant Biology, 14(2), 474–482. https://doi.org/10.3390/ijpb14020036

Destiasari, A., Sumiyati, S., & Istirokhatun, T. (2024). Review Metode Kompos Aerob: Windrow, Takakura dan Composter Bag. Jurnal Ilmu Lingkungan, 22(2), 355–364. https://doi.org/10.14710/jil.22.2.355-364

Devlin, T. R., Di Biase, A., Wei, V., Elektorowicz, M., & Oleszkiewicz, J. A. (2017). Removal of Soluble Phosphorus from Surface Water Using Iron (Fe–Fe) and Aluminum (Al–Al) Electrodes. Environmental Science & Technology, 51(23), 13825–13833. https://doi.org/10.1021/acs.est.7b02353

Dewilda, Y., Silvia, S., Riantika, M., & Zulkarnaini. (2021). Food Waste Composting with The Addition Of Cow Rumen Using The Takakura Method and Identification of Bacteria that Role in Composting. IOP Conference Series: Materials Science and Engineering, 1041(1), 012028. https://doi.org/10.1088/1757-899X/1041/1/012028

Gerke, J. (2022). The Central Role of Soil Organic Matter in Soil Fertility and Carbon Storage. Soil Systems, 6(2), 33. https://doi.org/10.3390/soilsystems6020033

Giagnoni, L., Martellini, T., Scodellini, R., Cincinelli, A., & Renella, G. (2020). Co-composting: An Opportunity to Produce Compost with Designated Tailor-Made Properties. In H. Hettiarachchi, S. Caucci, & K. Schwärzel (Eds.), Organic Waste Composting through Nexus Thinking (pp. 185–211). Springer International Publishing. https://doi.org/10.1007/978-3-030-36283-6_9

Guliyev, V., Tanunchai, B., Udovenko, M., Menyailo, O., Glaser, B., Purahong, W., Buscot, F., & Blagodatskaya, E. (2023). Degradation of Bio-Based and Biodegradable Plastic and Its Contribution to Soil Organic Carbon Stock. Polymers, 15(3), 660. https://doi.org/10.3390/polym15030660

Harju, A. V., Närhi, I., Mattsson, M., Kerminen, K., & Kontro, M. H. (2021). Organic Matter Causes Chemical Pollutant Dissipation Along With Adsorption and Microbial Degradation. Frontiers in Environmental Science, 9, 666222. https://doi.org/10.3389/fenvs.2021.666222

Hasna, N., Juwana, I., & Satori, M. (2020). Studi Komparasi Komposter Berbasis Masyarakat. Jurnal Reka Lingkungan, 9(1), 34–44. https://doi.org/10.26760/rekalingkungan.v9i1.34-44

Hettiarachchi, H., Bouma, J., Caucci, S., & Zhang, L. (2020). Organic Waste Composting Through Nexus Thinking: Linking Soil and Waste as a Substantial Contribution to Sustainable Development. In H. Hettiarachchi, S. Caucci, & K. Schwärzel (Eds.), Organic Waste Composting through Nexus Thinking (pp. 1–15). Springer International Publishing. https://doi.org/10.1007/978-3-030-36283-6_1

Jalalipour, H., Jaafarzadeh, N., Morscheck, G., Narra, S., & Nelles, M. (2020). Potential of Producing Compost from Source-Separated Municipal Organic Waste (A Case Study in Shiraz, Iran). Sustainability, 12(22), 9704. https://doi.org/10.3390/su12229704

Kassa, A., Sekine, R., Dorji, T., Pathak, G. K., Hayano, K., Yamauchi, H., & Mochizuki, Y. (2024). Insights into water absorption characteristics of various waste-based inorganic additives and their application for soil stabilization. Journal of Cleaner Production, 446, 141470. https://doi.org/10.1016/j.jclepro.2024.141470

Kaswinarni, F., & Nugraha, A. A. S. (2020). Kadar Fosfor, Kalium dan Sifat Fisik Pupuk Kompos Sampah Organik Pasar dengan Penambahan Starter EM4, Kotoran Sapi dan Kotoran Ayam. Titian Ilmu: Jurnal Ilmiah Multi Sciences, 12(1), 1–6. https://doi.org/10.30599/jti.v12i1.534

Kibria, Md. G., Masuk, N. I., Safayet, R., Nguyen, H. Q., & Mourshed, M. (2023). Plastic Waste: Challenges and Opportunities to Mitigate Pollution and Effective Management. International Journal of Environmental Research, 17(1), 20. https://doi.org/10.1007/s41742-023-00507-z

Kong, Z., Wang, X., Liu, Q., Li, T., Chen, X., Chai, L., Liu, D., & Shen, Q. (2018). Evolution of various fractions during the windrow composting of chicken manure with rice chaff. Journal of Environmental Management, 207, 366–377. https://doi.org/10.1016/j.jenvman.2017.11.023

Leifeld, J., Klein, K., & Wüst-Galley, C. (2020). Soil organic matter stoichiometry as indicator for peatland degradation. Scientific Reports, 10(1), 7634. https://doi.org/10.1038/s41598-020-64275-y

Mabagala, F. S., & Mng’ong’o, M. E. (2022). On the tropical soils; The influence of organic matter (OM) on phosphate bioavailability. Saudi Journal of Biological Sciences, 29(5), 3635–3641. https://doi.org/10.1016/j.sjbs.2022.02.056

Malinverno, A., & Martinez, E. A. (2015). The effect of temperature on organic carbon degradation in marine sediments. Scientific Reports, 5(1), 17861. https://doi.org/10.1038/srep17861

Novita, E., Antang, E. U., Lautt, B. S., & Surawijaya, P. (2021). Kualitas Kompos Cacing Tanah Lumbricus rubellus Pada Pakan dan Media yang Berbeda. Jurnal Penelitian UPR, 1(1), 27–35. https://doi.org/10.52850/jptupr.v1i1.3159

Palaniveloo, K., Amran, M. A., Norhashim, N. A., Mohamad-Fauzi, N., Peng-Hui, F., Hui-Wen, L., Kai-Lin, Y., Jiale, L., Chian-Yee, M. G., Jing-Yi, L., Gunasekaran, B., & Razak, S. A. (2020). Food Waste Composting and Microbial Community Structure Profiling. Processes, 8(6), 723. https://doi.org/10.3390/pr8060723

Rastogi, M., Nandal, M., & Khosla, B. (2020). Microbes as vital additives for solid waste composting. Heliyon, 6(2), e03343. https://doi.org/10.1016/j.heliyon.2020.e03343

Razaq, M., Zhang, P., Shen, H., & Salahuddin. (2017). Influence of nitrogen and phosphorous on the growth and root morphology of Acer mono. PLOS ONE, 12(2), e0171321. https://doi.org/10.1371/journal.pone.0171321

Rehman, R. A., & Qayyum, M. F. (2020). Co-composts of sewage sludge, farm manure and rock phosphate can substitute phosphorus fertilizers in rice-wheat cropping system. Journal of Environmental Management, 259, 109700. https://doi.org/10.1016/j.jenvman.2019.109700

Rochaeni, A., Ariantara, B., Mulyatna, L., Nugraha, A., & Apriansyah, R. (2024). The Effect of Air Flow and Stirring Frequency in Continuous Thermophilic Composting. Journal of Community Based Environmental Engineering and Management, 8(8), 75–84. https://doi.org/10.23969/jcbeem.v8i1.12958

Santoro, V., Schiavon, M., & Celi, L. (2024). Role of soil abiotic processes on phosphorus availability and plant responses with a focus on strigolactones in tomato plants. Plant and Soil, 494(1–2), 1–49. https://doi.org/10.1007/s11104-023-06266-2

Sayara, T., Basheer-Salimia, R., Hawamde, F., & Sánchez, A. (2020). Recycling of Organic Wastes through Composting: Process Performance and Compost Application in Agriculture. Agronomy, 10(11), 1838. https://doi.org/10.3390/agronomy10111838

Siddiqua, A., Hahladakis, J. N., & Al-Attiya, W. A. K. A. (2022). An overview of the environmental pollution and health effects associated with waste landfilling and open dumping. Environmental Science and Pollution Research, 29(39), 58514–58536. https://doi.org/10.1007/s11356-022-21578-z

Solomon, W., Mutum, L., Janda, T., & Molnár, Z. (2023). Potential benefit of microalgae and their interaction with bacteria to sustainable crop production. Plant Growth Regulation, 101(1), 53–65. https://doi.org/10.1007/s10725-023-01019-8

Trivana, L., & Pradhana, A. Y. (2017). Optimalisasi Waktu Pengomposan dan Kualitas Pupuk Kandang dari Kotoran Kambing dan Debu Sabut Kelapa dengan Bioaktivator PROMI dan Orgadec. Jurnal Sain Veteriner, 35(1), 136. https://doi.org/10.22146/jsv.29301

Wang, H., Su, Z., Ren, S., Zhang, P., Li, H., Guo, X., & Liu, L. (2024). Combined Use of Biochar and Microbial Agents Can Promote Lignocellulosic Degradation Microbial Community Optimization during Composting of Submerged Plants. Fermentation, 10(1), 70. https://doi.org/10.3390/fermentation10010070

Yang, Y., Du, W., Ren, X., Cui, Z., Zhou, W., & Lv, J. (2020). Effect of bean dregs amendment on the organic matter degradation, humification, maturity and stability of pig manure composting. Science of The Total Environment, 708, 134623. https://doi.org/10.1016/j.scitotenv.2019.134623

Zaman, B., Sutrisno, E., Sudarno, S., Simanjutak, M. N., & Krisnanda, E. (2020). Natural Soil as Bio-activator for Wastewater Treatment System. IOP Conference Series: Earth and Environmental Science, 448(1), 012032. https://doi.org/10.1088/1755-1315/448/1/012032

Zhan, Y., Zhang, Z., Ma, T., Zhang, X., Wang, R., Liu, Y., Sun, B., Xu, T., Ding, G., Wei, Y., & Li, J. (2021). Phosphorus excess changes rock phosphate solubilization level and bacterial community mediating phosphorus fractions mobilization during composting. Bioresource Technology, 337, 125433. https://doi.org/10.1016/j.biortech.2021.125433

Zheng, C., Zhao, L., Zhou, X., Fu, Z., & Li, A. (2013). Treatment Technologies for Organic Wastewater. In W. Elshorbagy (Ed.), Water Treatment. InTech. https://doi.org/10.5772/52665

Zhou, J., Yang, F., Zhao, X., Gu, X., Chen, C., & Chen, J. (2024). Influences of nitrogen input forms and levels on phosphorus availability in karst grassland soils. Frontiers in Sustainable Food Systems, 8, 1343283. https://doi.org/10.3389/fsufs.2024.1343283

Zhu-Barker, X., Bailey, S. K., Paw U, K. T., Burger, M., & Horwath, W. R. (2017). Greenhouse gas emissions from green waste composting windrow. Waste Management, 59, 70–79. https://doi.org/10.1016/j.wasman.2016.10.004

Author Biographies

Ilham, Universitas Diponegoro

Sri Sumiyati, Universitas Diponegoro

Sudarno, Universitas Diponegoro

Downloads

Download data is not yet available.

How to Cite

Ilham, Sumiyati, S., & Sudarno. (2025). Comparison of Composting Results Using the Batu Terawang Method and Open Windrow Method. Jurnal Penelitian Pendidikan IPA, 11(2), 164–171. https://doi.org/10.29303/jppipa.v11i2.8184