Trends Research Synthesis of TiO2 Thin Films as Solar Cell Materials (2015-2024): A Systematic Review

Authors

Aris Doyan , Susilawati , Muhammad Taufik

DOI:

10.29303/jppipa.v10i9.8310

Published:

2024-09-25

Issue:

Vol. 10 No. 9 (2024): September : In Progress

Keywords:

Review, Solar cell, Synthesis, TiO2 thin films

Research Articles

Downloads

How to Cite

Doyan, A., Susilawati, & Taufik, M. (2024). Trends Research Synthesis of TiO2 Thin Films as Solar Cell Materials (2015-2024): A Systematic Review. Jurnal Penelitian Pendidikan IPA, 10(9), 6396–6404. https://doi.org/10.29303/jppipa.v10i9.8310

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

Research in the field of solar cells continues to increase along with the development of the times and human needs for renewable energy sources. One of the fields of study that is often used as a research topic is the development of Thin Film Solar Cells or known as Thin Film Solar Cells (TFSC). This research aims to identify and analyze research trends of synthesis of TiO2 thin films as solar cell materials. This research method is descriptive and analytical. The data used in this research was obtained from documents indexed by Google Scholar from 2015-2024 using Publish or Perish and Dimension.ai. Research procedures use PRISMA guidelines. The data identified and analyzed are the type of publication, publication source, and the title of research on synthesis of Ti02 thin films as solar cell materials that is widely cited. The data analysis method uses bibliometric analysis assisted by VOS viewer software. The results of the analysis show that research trend on synthesis of TiO2 thin films as solar cell materials indexed by Google Scholar from 2015 to 2024 has experienced increases and decreases. There are many documents in the form of articles, proceedings, chapters, preprints, monograph and edited books that discuss research about synthesis of TiO2 thin films as solar cell materials. Key words that are often used in research about it are dye sensitized cell, electrode, electron, characterization, etc.

References

Albetran, H. M. M. (2016). Synthesis and characterisation of nanostructured tio2 for photocatalytic applications. Curtin University. Retriesved from http://hdl.handle.net/20.500.11937/86

Allen, N. S., Mahdjoub, N., Vishnyakov, V., Kelly, P. J., & Kriek, R. J. (2018). The effect of crystalline phase (anatase, brookite and rutile) and size on the photocatalytic activity of calcined polymorphic titanium dioxide (TiO2). Polymer degradation and stability, 150, 31-36. https://doi.org/10.1016/j.polymdegradstab.2018.02.008

Bahtiar, B., Yusuf, Y., Doyan, A., & Ibrahim, I. (2023). Trend of Technology Pedagogical Content Knowledge (TPACK) Research in 2012-2022: Contribution to Science Learning of 21st Century. Jurnal Penelitian Pendidikan IPA, 9(5), 39–47. https://doi.org/10.29303/jppipa.v9i5.3685

Bhernama, B. G., Safni, S., & Syukri, S. (2017). Degradasi Zat Warna Metanil Yellow dengan Penyinaran Matahari dan Penambahan Katalis TiO2-SnO2. Lantanida Journal, 3(2), 116-126. http://dx.doi.org/10.22373/lj.v3i2.1653

Boro, B., Gogoi, B., Rajbongshi, B.M., Ramchiary, A., 2018. Nano-structured TiO2/ZnO nanocomposite for dye-sensitized solar cells application: A review. Renewable and Sustainable Energy Reviews 81, 2264–2270. https://doi.org/10.1016/j.rser.2017.06.035

Bredas, J.L., Sargent, E. H., & Scholes, G. D. (2017). Photovoltaic Concepts Inspired by Coherence Effects in Photosynthetic System. Nature Materials, 16(1), 35-44. https://doi.org/10.1038/nmat4767

Chandra, K. A., & Gill, S. S. (2017). Recent progress in dye sensitized solar cells. Int. J. Adv. Res. Ideas Innov. Technol, 3, 77-85. Retrieved from https://rb.gy/znd90c

Doyan, A., Mahardika, I. K., Rizaldi, D. R., & Fatimah, Z. (2022). Structure and optical properties of Titanium Dioxide thin film with mixed Fluorine and Indium doping for solar cell components. In Journal of Physics: Conference Series (Vol. 2165, No. 1, p. 012009). IOP Publishing. https://doi.org/10.1088/1742-6596/2165/1/012009

Doyan, A., Susilawati, Purwoko, A. A., Ibrahim, Ahzan, S., Gummah, S., Bahtiar, & Ikhsan, M. (2023). Trend Synthesis Thin Film Research as Electronic Device (A Review). Jurnal Penelitian Pendidikan IPA, 9(11), 1155–1164. https://doi.org/10.29303/jppipa.v9i11.5764

Eddy, D. R., Permana, M. D., Sakti, L. K., Sheha, G. A. N., Solihudin, Hidayat, S., ... & Rahayu, I. (2023). Heterophase polymorph of TiO2 (Anatase, Rutile, Brookite, TiO2 (B)) for efficient photocatalyst: fabrication and activity. Nanomaterials, 13(4), 704. https://doi.org/10.3390/nano13040704

Efaz, E. T., Rhaman, M. M., Al Imam, S., Bashar, K. L., Kabir, F., Mourtaza, M. E., ... & Mozahid, A. F. (2021). A review of primary technologies of thin-film solar cells. Engineering Research Express, 3(3), 032001. https://doi.org/10.1088/2631-8695/ac2353

Eliyana, A., Puspitarum, D. L., & Laksono, D. (2020). Effect of Red Dragon Fruit Extract as Dye in Solar Cells. Jurnal Ilmu Dasar, 21(1), 49-54. https://doi.org/10.19184/jid.v21i1.10922

Hallinger, P., & Chatpinyakoop, C. (2019). A Bibliometric Review of Research on Higher Education for Sustainable Development, 1998–2018. Sustainability, 11(8), 2401. https://doi.org/10.3390/su11082401

Hallinger, P., & Nguyen, V.-T. (2020). Mapping the Landscape and Structure of Research on Education for Sustainable Development: A Bibliometric Review. Sustainability, 12(5), 1947. https://doi.org/10.3390/su12051947

Hohol, M., Sanytsky, M., Kropyvnytska, T., Barylyak, A., & Bobitski, Y. (2020). The effect of sulfur-and carbon-codoped TiO2 nanocomposite on the photocatalytic and mechanical properties of cement mortars. Восточно-Европейский журнал передовых технологий, 4(6-106), 6-14. https://doi.org/10.15587/1729-4061.2020.210218

Husain, A. A., Hasan, W. Z. W., Shafie, S., Hamidon, M. N., & Pandey, S. S. (2018). A review of transparent solar photovoltaic technologies. Renewable and sustainable energy reviews, 94, 779-791. https://doi.org/10.1016/j.rser.2018.06.031

Kadem, B. Y. (2017). P3HT: PCBM-based organic solar cells: Optimisation of active layer nanostructure and interface properties. Sheffield Hallam University (United Kingdom).

Karim, N. A., Mehmood, U., Zahid, H. F., & Asif, T. (2019). Nanostructured photoanode and counter electrode materials for efficient Dye-Sensitized Solar Cells (DSSCs). Solar Energy, 185, 165-188.

https://doi.org/10.1016/j.solener.2019.04.057

Kaur, S., Kumar, R., Kaur, R., Singh, S., Rani, S., & Kaur, A. (2022). Piezoelectric materials in sensors: Bibliometric and visualization analysis. Materials Today: Proceedings, 65, 3780–3786. https://doi.org/10.1016/j.matpr.2022.06.484

Kumar, Y., Chhalodia, T., Bedi, P. K. G., & Meena, P. L. (2023). Photoanode modified with nanostructures for efficiency enhancement in DSSC: a review. Carbon Letters, 33(1), 35-58. https://doi.org/10.1007/s42823-022-00422-x

Liao, H., Tang, M., Luo, L., Li, C., Chiclana, F., & Zeng, X.-J. (2018). A Bibliometric Analysis and Visualization of Medical Big Data Research. Sustainability, 10(2), 166. https://doi.org/10.3390/su10010166

Liu, L., Schuster, G. L., Moosmüller, H., Stamnes, S., Cairns, B., & Chowdhary, J. (2022). Optical properties of morphologically complex black carbon aerosols: Effects of coatings. Journal of Quantitative Spectroscopy and Radiative Transfer, 281, 108080. https://doi.org/10.1016/j.jqsrt.2022.108080

Meng, H., Han, Y., Zhou, C., Jiang, Q., Shi, X., Zhan, C., & Zhang, R. (2020). Conductive metal–organic frameworks: design, synthesis, and applications. Small Methods, 4(10), 2000396. https://doi.org/10.1002/smtd.202000396

Mitrašinović, A. M. (2021). Photovoltaics advancements for transition from renewable to clean energy. Energy, 237, 121510. https://doi.org/10.1016/j.energy.2021.121510

Nayak, P. K., Mahesh, S., Snaith, H. J., & Cahen, D. (2019). Photovoltaic solar cell technologies: analysing the state of the art. Nature Reviews Materials, 4(4), 269-285. https://doi.org/10.1038/s41578-019-0097-0

Okto, S. H. S., & Munasir, M. (2023). Green Synthesis Nanopartikel TiO2 Sebagai Material Fotokatalis. Jurnal Inovasi Fisika Indonesia (IFI), 12(2), 82-91. Retrieved from https://ejournal.unesa.ac.id/index.php/inovasi-fisika-indonesia/article/view/53183

Oltarzhevskyi, D. O. (2019). Typology of contemporary corporate communication channels. Corporate Communications: An International Journal, 24(4), 608–622. https://doi.org/10.1108/CCIJ-04-2019-0046

Rathore, N., Panwar, N. L., Yettou, F., & Gama, A. (2021). A comprehensive review of different types of solar photovoltaic cells and their applications. International Journal of Ambient Energy, 42(10), 1200-1217. https://doi.org/10.1080/01430750.2019.1592774

Rizaldi, D. R., Doyan, A., & Susilawati, S. (2022). Sintesis Lapisan Tipis TiO2:(F+ In) pada Substrat Kaca Dengan Metode Spin-Coating Sebagai Bahan Sel Surya. ORBITA: Jurnal Pendidikan dan Ilmu Fisika, 7(1), 219-224. https://doi.org/10.31764/orbita.v%25vi%25i.4655

Roy, S., Baruah, M. S., Sahu, S., & Nayak, B. B. (2021). Computational analysis on the thermal and mechanical properties of thin film solar cells. Materials Today: Proceedings, 44, 1207-1213. https://doi.org/10.1016/j.matpr.2020.11.241

Saif, O. M., Elogail, Y., Abdolkader, T. M., Shaker, A., Zekry, A., Abouelatta, M., ... & Fedawy, M. (2023). Comprehensive review on thin film homojunction solar cells: technologies, progress and challenges. Energies, 16(11), 4402. https://doi.org/10.3390/en16114402

Setyawan, H. P., & Suryani, O. (2024). Modified Titanium Oxide with Metal Doping as Photocatalyst in Photochemical Water Splitting. Jurnal Sains Natural, 14(1), 01-12. https://doi.org/10.31938/jsn.v14i1.652

Shabrina, N., Yudoyono, G., & Sudarsono, S. (2023). Karakterisasi Struktur, Morfologi, dan Sifat Optik Lapisan Tipis Titanium Dioksida yang Dideposisi Menggunakan Teknik Spray Pyrolysis. Jurnal Sains dan Seni ITS, 11(5), B1-B6. https://doi.org/10.12962/j23373520.v11i5.108566

Sharma, I., Pawar, P. S., Yadav, R. K., Nandi, R., & Heo, J. (2022). Review on bandgap engineering in metal-chalcogenide absorber layer via grading: a trend in thin-film solar cells. Solar Energy, 246, 152-180. https://doi.org/10.1016/j.solener.2022.09.046

Song, Y., & Zhang, W. (2021). Inorganic and Organic Thin Films. Wiley-VCH.

Suriani, A. B., Mohamed, A., Mamat, M. H., Othman, M. H. D., Ahmad, M. K., Khalil, H. A., & Birowosuto, M. D. (2019). Titanium dioxide/agglomerated-free reduced graphene oxide hybrid photoanode film for dye-sensitized solar cells photovoltaic performance improvement. Nano-Structures & Nano-Objects, 18, 100314. https://doi.org/10.1016/j.nanoso.2019.100314

Suseno, B. A., & Fauziah, E. (2020). Improving Penginyongan Literacy in Digital Era Through E-Paper Magazine of Ancas Banyumasan. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3807680

Underwood, C., Lamb, D., Irvine, S., Mardhani, S., & Lassakeur, A. (2023). IAC-22-C3. 3.8 Six years of spaceflight results from the AlSat-1N Thin-Film Solar Cell (TFSC) experiment. Acta Astronautica, 213, 20-28. https://doi.org/10.1016/j.actaastro.2023.08.034

Yadav, V., Chaudhary, S., Gupta, S. K., & Verma, A. S. (2020). Synthesis and characterization of TiO2 thin film electrode based dye sensitized solar cell. East European Journal of Physics, (3), 129-133. https://doi.org/10.26565/2312-4334-2020-3-16

Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education – where are the educators? International Journal of Educational Technology in Higher Education, 16(1), 39. https://doi.org/10.1186/s41239-019-0171-0

Žerjav, G., Žižek, K., Zavašnik, J., & Pintar, A. (2022). Brookite vs. rutile vs. anatase: Whats behind their various photocatalytic activities? Journal of environmental chemical engineering, 10(3), 107722. https://doi.org/10.1016/j.jece.2022.107722

Author Biographies

Aris Doyan, University of Mataram

Susilawati, University of Mataram

Muhammad Taufik, University of Mataram

License

Copyright (c) 2024 Aris Doyan, Susilawati, Muhammad Taufik

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).