Molecular Dynamics Study of Carbon Dioxide Gas Within Ice XVII Structure

Authors

DOI:

10.29303/jppipa.v11i1.8336

Published:

2025-01-26

Issue:

Vol. 11 No. 1 (2025): In Progress

Keywords:

CO2 hydrate, Diffusion coefficient, Ice XVII, Molecular dynamics

Research Articles

Downloads

How to Cite

Arman, Y., Artedi, & Hasanuddin. (2025). Molecular Dynamics Study of Carbon Dioxide Gas Within Ice XVII Structure. Jurnal Penelitian Pendidikan IPA, 11(1), 388–394. https://doi.org/10.29303/jppipa.v11i1.8336

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

We conducted a molecular dynamics study on CO2 hydrate within the ice XVII structure to examine the molecular diffusion of CO2 molecules, as it is essential to the hydrate potential as a carbon capture. The simulated CO2 hydrate system used 324 water molecules and 90 CO2 molecules. We used the TIP4P/Ice model for water molecules, and the CO2 molecules were treated as united atom. The simulations were carried out at 273,15 K under various pressures of 200 MPa, 500 MPa, and 1000 MPa for 1,50 ns, with a step size of 1 fs. The results showed that the CO2 molecules were confined and freely moved inside the cage-like chiral tube along the c-axis of the ice XVII structure. No significant inter-cage hopping was observed during the evolution of all simulated systems. The diffusion coefficient values for CO2 molecules within the ice XVII structure were 5.03 × 10-8 cm2s-1, 2.45 × 10-8 cm2s-1, and 8.86 × 10-8 cm2s-1  for the respective pressure variations of 200 MPa, 500 MPa, and 1000 MPa, resulting in an inverse proportional with the system's pressure. A higher diffusion coefficient facilitates a faster the mass transfer and adsorption rate of CO2 in formation build up of the CO2 hydrate system.

References

Amos, D. M., Donnelly, M. E., Teeratchanan, P., Bull, C. L., Falenty, A., Kuhs, W. F., Hermann, A., & Loveday, J. S. (2017). A Chiral Gas-Hydrate Structure Common to the Carbon Dioxide-Water and Hydrogen-Water Systems. Journal of Physical Chemistry Letters, 8(17), 4295–4299. https://doi.org/10.1021/acs.jpclett.7b01787

Arman, Y., & Nugroho, B. S. (2021). Molecular dynamics study of hydrogen diffusion in the C2 Hydrogen Hydrates. Journal of Physics: Conference Series, 1816(1), 012084. https://doi.org/10.1088/1742-6596/1816/1/012084

Catti, M., del Rosso, L., Ulivi, L., Celli, M., Grazzi, F., & Hansen, T. C. (2019). Ne- and O2-filled ice XVII: a neutron diffraction study. Phys. Chem. Chem. Phys., 21(27), 14671–14677. https://doi.org/10.1039/C9CP02218J

Chen, Y. A., Chu, L. K., Chu, C. K., Ohmura, R., & Chen, L. J. (2019). Synthesis of Methane Hydrate from Ice Powder Accelerated by Doping Ethanol into Methane Gas. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-48832-8

del Rosso, L., Celli, M., Colognesi, D., Grazzi, F., & Ulivi, L. (2021). Irreversible structural changes of recovered hydrogen hydrate transforming from C0 phase to ice XVII. Chemical Physics, 544, 111092. https://doi.org/10.1016/J.CHEMPHYS.2021.111092

del Rosso, L., Celli, M., Grazzi, F., Catti, M., Hansen, T. C., Fortes, A. D., & Ulivi, L. (2020). Cubic ice Ic without stacking defects obtained from ice XVII. Nature Materials, 19(6), 663–668. https://doi.org/10.1038/s41563-020-0606-y

del Rosso, L., Celli, M., & Ulivi, L. (2016). New porous water ice metastable at atmospheric pressure obtained by emptying a hydrogen-filled ice. Nature Communications, 7(1), 1–7. https://doi.org/10.1038/ncomms13394

del Rosso, L., Celli, M., & Ulivi, L. (2017). Ice XVII as a Novel Material for Hydrogen Storage. Challenges, 8(1), 3. https://doi.org/10.3390/challe8010003

del Rosso, L., Colognesi, D., Donati, A., Rudić, S., & Celli, M. (2024). Microscopic dynamics of gas molecules confined in porous channel-like ice structure. Journal of Chemical Physics, 160(15). https://doi.org/10.1063/5.0201961

del Rosso, L., Grazzi, F., Celli, M., Colognesi, D., Garcia-Sakai, V., & Ulivi, L. (2016). Refined structure of metastable ice XVII from neutron diffraction measurements. Journal of Physical Chemistry C, 120(47), 26955–26959. https://doi.org/10.1021/acs.jpcc.6b10569

Dewangan, S. K., Mohan, M., Kumar, V., Sharma, A., & Ahn, B. (2022). A comprehensive review of the prospects for future hydrogen storage in materials-application and outstanding issues. International Journal of Energy Research, 46(12), 16150–16177. https://doi.org/10.1002/ER.8322

Field, C. B., & Mach, K. J. (2017). Rightsizing carbon dioxide removal. Science, 356(6339), 706–707. https://doi.org/10.1126/science.aam9726

Gambelli, A. M., Rossi, F., & Cotana, F. (2022). Gas Hydrates as High-Efficiency Storage System: Perspectives and Potentialities. Energies, 15(22). https://doi.org/10.3390/en15228728

Harada, A., Arman, Y., & Miura, S. (2019). Molecular dynamics study on fast diffusion of hydrogen molecules in filled ice II. Journal of Molecular Liquids. Retrieved from https://api.semanticscholar.org/CorpusID:198346691

Hirai, H., & Kadobayashi, H. (2023). Significance of the high-pressure properties and structural evolution of gas hydrates for inferring the interior of icy bodies. Progress in Earth and Planetary Science, 10(1), 3. https://doi.org/10.1186/s40645-023-00534-6

Hirai, H., Komatsu, K., Honda, M., Kawamura, T., Yamamoto, Y., & Yagi, T. (2010). Phase changes of CO2 hydrate under high pressure and low temperature. The Journal of Chemical Physics, 133(12). https://doi.org/10.1063/1.3493452

Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: visual molecular dynamics. Journal of molecular graphics, 14(1), 33-38. https://doi.org/10.1016/0263-7855(96)00018-5

Ida, T., Endo, K., Matsumoto, D., Kato, N., Mizuno, M., Suzuki, Y., & Tadokoro, M. (2013). Dynamic and static behaviors of CH4 and CO2 in small and large cavities of hydrate. Journal of Molecular Structure, 1032, 275–280. https://doi.org/10.1016/J.MOLSTRUC.2012.10.015

Kim, M. K., & Ahn, Y. H. (2024). Gas Hydrates for Hydrogen Storage: A Comprehensive Review and Future Prospects. Korean Journal of Chemical Engineering, 41(1), 73–94. https://doi.org/10.1007/S11814-024-00025-4

Koirala, R. P., Bhusal, H. P., Khanal, S. P., & Adhikari, N. P. (2020). Effect of temperature on transport properties of cysteine in water. AIP Advances, 10(2). https://doi.org/10.1063/1.5132777

Kuhs, W. F., Hansen, T. C., & Falenty, A. (2018). Filling Ices with Helium and the Formation of Helium Clathrate Hydrate. Journal of Physical Chemistry Letters, 9(12), 3194–3198. https://doi.org/10.1021/ACS.JPCLETT.8B01423/SUPPL_FILE/JZ8B01423_SI_003.CIF

Liang, S., Liang, D., Wu, N., Yi, L., & Hu, G. (2016). Molecular Mechanisms of Gas Diffusion in CO2 Hydrates. Journal of Physical Chemistry C, 120(30), 16298–16304. https://doi.org/10.1021/acs.jpcc.6b03111

Liu, F. P., Li, A. R., Qing, S. L., Luo, Z. D., & Ma, Y. L. (2022). Formation kinetics, mechanism of CO2 hydrate and its applications. Renewable and Sustainable Energy Reviews, 159, 112221. https://doi.org/10.1016/J.RSER.2022.112221

Massani, B., Conway, L. J., Hermann, A., & Loveday, J. (2019). On a new nitrogen s X hydrate from ice XVII. Journal of Chemical Physics, 151(10). https://doi.org/10.1063/1.5100868

Matsumoto, M., Yagasaki, T., & Tanaka, H. (2018). GenIce: Hydrogen‐Disordered Ice Generator. Journal of Computational Chemistry, 39(1), 61–64. https://doi.org/10.1002/jcc.25077

Michl, J., Sega, M., & Dellago, C. (2019). Phase stability of the ice XVII-based CO2 chiral hydrate from molecular dynamics simulations. Journal of Chemical Physics, 151(10). https://doi.org/10.1063/1.5116540

Momma, K., & Izumi, F. (2008). VESTA: A three-dimensional visualization system for electronic and structural analysis. Journal of Applied Crystallography, 41(3), 653–658. https://doi.org/10.1107/S0021889808012016

Pandey, G., Poothia, T., & Kumar, A. (2022). Hydrate based carbon capture and sequestration (HBCCS): An innovative approach towards decarbonization. Applied Energy, 326, 119900. https://doi.org/10.1016/J.APENERGY.2022.119900

Pandey, J. S., Srivastava, S., Feyissa, A. H., Tariq, M., & Tumba, K. (2024). The potential role of gas hydrates: An emerging frontier in food science and engineering. Journal of Food Engineering, 382. Elsevier Ltd. https://doi.org/10.1016/j.jfoodeng.2024.112210

Polat, H. M., Coelho, F. M., Vlugt, T. J. H., Mercier Franco, L. F., Tsimpanogiannis, I. N., & Moultos, O. A. (2024). Diffusivity of CO2 in H2O: A Review of Experimental Studies and Molecular Simulations in the Bulk and in Confinement. Journal of Chemical & Engineering Data. https://doi.org/10.1021/acs.jced.3c00778

Pradana, I. P., Mardiana, D., & Hakim, L. (2020). Carbon dioxide occupancies inside ice XVII structure from grand-canonical Monte Carlo simulation. IOP Conference Series: Materials Science and Engineering, 833(1). https://doi.org/10.1088/1757-899X/833/1/012035

Saikia, T., Patil, S., & Sultan, A. (2023). Hydrogen Hydrate Promoters for Gas Storage—A Review. In Energies (Vol. 16, Issue 6). MDPI. https://doi.org/10.3390/en16062667

Strobel, T. A., Somayazulu, M., Sinogeikin, S. V., Dera, P., & Hemley, R. J. (2016). Hydrogen-Stuffed, Quartz-like Water Ice. Journal of the American Chemical Society, 138(42), 13786–13789. https://doi.org/10.1021/JACS.6B06986/SUPPL_FILE/JA6B06986_SI_001.PDF

Thompson, A. P., Aktulga, H. M., Berger, R., Bolintineanu, D. S., Brown, W. M., Crozier, P. S., in ’t Veld, P. J., Kohlmeyer, A., Moore, S. G., Nguyen, T. D., Shan, R., Stevens, M. J., Tranchida, J., Trott, C., & Plimpton, S. J. (2022). LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Computer Physics Communications, 271. https://doi.org/10.1016/j.cpc.2021.108171

Tulk, C. A., Machida, S., Klug, D. D., Lu, H., Guthrie, M., & Molaison, J. J. (2014). The structure of CO₂ hydrate between 0.7 and 1.0 GPa. Journal of Chemical Physics, 141(17). https://doi.org/10.1063/1.4899265

Verstreken, M. F. K., Chanut, N., Magnin, Y., Landa, H. O. R., Denayer, J. F. M., Baron, G. V., & Ameloot, R. (2024). Mind the Gap: The Role of Mass Transfer in Shaped Nanoporous Adsorbents for Carbon Dioxide Capture. Journal of the American Chemical Society, 146(34), 23633–23648. https://doi.org/10.1021/JACS.4C03086/SUPPL_FILE/JA4C03086_SI_001.PDF

Wang, X., Zhang, F., & Lipiński, W. (2020). Research progress and challenges in hydrate-based carbon dioxide capture applications. Applied Energy, 269, 114928. https://doi.org/10.1016/J.APENERGY.2020.114928

Xia, Z., Li, Z., Chen, Z., Li, X., Zhang, Y., Yan, K., & Lv, Q. (2019). CO2/H2/H2O Hydrate Formation with TBAB and Nanoporous Materials. Energy Procedia, 158, 5866–5871. https://doi.org/10.1016/J.EGYPRO.2019.01.539

Xu, K., Lin, Y., Li, T., Fu, Y., Zhang, Z., & Wu, J. (2022). Structural and mechanical stability of clathrate hydrates encapsulating monoatomic guest species. Journal of Molecular Liquids, 347, 118391. https://doi.org/10.1016/J.MOLLIQ.2021.118391

Yang, M., Wu, M., Yang, Z., Wang, P., Chen, B., & Song, Y. (2024). Behaviors of hydrate cap formation via CO2-H2O collaborative injection:Applying to secure marine carbon storage. Gas Science and Engineering, 131, 205451. https://doi.org/10.1016/J.JGSCE.2024.205451

Zhou, X., Zang, X., Long, Z., & Liang, D. (2021). Multiscale analysis of the hydrate based carbon capture from gas mixtures containing carbon dioxide. Scientific Reports, 11(1), 1–9. https://doi.org/10.1038/s41598-021-88531-x

Author Biographies

Yudha Arman, Universitas Tanjungpura

Artedi, Universitas Tanjungpura

Hasanuddin, Universitas Tanjungpura

License

Copyright (c) 2025 Yudha Arman, Artedi, Hasanuddin

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).