Landslide Hazard Analysis Based on Geographic Information Systems in Sumedang Regency
DOI:
10.29303/jppipa.v10iSpecialIssue.8354Published:
2024-08-25Issue:
Vol. 10 No. SpecialIssue (2024): Science Education, Ecotourism, Health ScienceKeywords:
Hazard, Disaster, Landslide, MitigationResearch Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
Sumedang Regency has a hilly landscape, making it one of the 13 cities/regencies in West Java Province that are prone to landslides. A total of 80 landslide incidents were recorded from 2019 to 2023. These landslides resulted in 45 fatalities, 53 injuries, and damage to 317 infrastructure units. This situation indicates the importance of conducting an analysis of landslide hazard distribution. The landslide hazard distribution analysis is carried out using a weighting and scoring method on the parameters used, which include: slope gradient, rainfall, actual land cover, landform, lithology, and soil type. Based on these parameters, four landslide hazard classes were identified in Sumedang Regency: low, medium, high, and very high hazard classes. Proportions of these hazard are as follows: high hazard class (42.24%), medium hazard class (40.38%), low hazard class (13.90%), and very high hazard class (3.49%). The low hazard class is mainly found in the northern part of Sumedang Regency, the medium hazard class is widespread in sloping areas, and the high to very high hazard classes are primarily found in the Tampomas mountains and areas with hilly landforms. Slope gradient and rainfall are the factors that most influence landslide hazards, making it necessary to design appropriate mitigation.
References
Abbaszadeh Shahri, A., Spross, J., Johansson, F., & Larsson, S. (2019). Landslide susceptibility hazard map in southwest Sweden using artificial neural network. CATENA, 183, 104225. https://doi.org/10.1016/j.catena.2019.104225
Asrizal, A., Hikmah, N., Febriya, D., & Mawaddah, F. (2023). Impact of Science Learning Materials Integrating Natural Disasters and Disaster Mitigation on Students’ Learning Outcomes: A Meta Analysis. Jurnal Penelitian Pendidikan IPA, 9(9), 586–595. https://doi.org/10.29303/jppipa.v9i9.2680
Asyari, T. D., Sailah, S., Jorena, J., & Kaban, H. (2023). Identifikasi Litologi Batuan Menggunakan Metode Geolistrik Sebagai Penyelidikan Awal Pembangunan Turap di Tepi Sungai. Jurnal Penelitian Sains, 25(3), 279. https://doi.org/10.56064/jps.v25i3.902
Ba, Q., Chen, Y., Deng, S., Wu, Q., Yang, J., & Zhang, J. (2017). An Improved Information Value Model Based on Gray Clustering for Landslide Susceptibility Mapping. ISPRS International Journal of Geo-Information, 6(1), 18. https://doi.org/10.3390/ijgi6010018
Bianchini, S., Raspini, F., Solari, L., Del Soldato, M., Ciampalini, A., Rosi, A., & Casagli, N. (2018). From Picture to Movie: Twenty Years of Ground Deformation Recording Over Tuscany Region (Italy) With Satellite InSAR. Frontiers in Earth Science, 6, 177. https://doi.org/10.3389/feart.2018.00177
Canavesi, V., Segoni, S., Rosi, A., Ting, X., Nery, T., Catani, F., & Casagli, N. (2020). Different Approaches to Use Morphometric Attributes in Landslide Susceptibility Mapping Based on Meso-Scale Spatial Units: A Case Study in Rio de Janeiro (Brazil). Remote Sensing, 12(11), 1826. https://doi.org/10.3390/rs12111826
Dharma, F., Aulia, A., Shubhan, F., & Ridwana, R. (2022). Pemanfaatan Citra Sentinel-2 Dengan Metode Ndvi Untuk Perubahan Kerapatan Vegetasi Mangrove Di Kabupaten Indramayu. Jurnal Pendidikan Geografi Undiksha. 10(2). https://doi.org/10.23887/jjpg.v10i2.42645
Diharja, R., Fahlevi, M. R., Rahayu, E. S., & Handini, W. (2022). Prototype-Design of Soil Movement Detector Using IoT Hands-on Application. Jurnal Penelitian Pendidikan IPA, 8(4), 2245–2254. https://doi.org/10.29303/jppipa.v8i4.1709
Dwinanda, I. G., Adelia, K. A. C., Wilda, R. W., Afli, F., Kaloka, T. P., & Pratiwie, D. L. (2024). Predictive Mapping of Hydrometeorological Disaster Prone Areas in Central Kalimantan. Jurnal Penelitian Pendidikan IPA, 10(2), 811–819. https://doi.org/10.29303/jppipa.v10i2.6238
Fadli, D. I., Awaliyah, I. A., Hadi, A. I., Farid, M., Akbar, A. J., & Refrizon, R. (2023). Microzonation Site Effects and Shear Strain during Earthquake Induced Landslide Using HVSR Measurement in Ulu Mana Sub-District, South Bengkulu Regency Indonesia. Jurnal Penelitian Pendidikan IPA, 9(2), 592–599. https://doi.org/10.29303/jppipa.v9i2.2961
Fathan Al-Hakim, A. F., & Rizal, Y. (2021). Fasies Sedimentasi dan Elemen Arsitektur Formasi Citalang di Desa Sidamukti, Majalengka, Provinsi Jawa Barat. Jurnal Geologi dan Sumberdaya Mineral, 22(3), 177–188. https://doi.org/10.33332/jgsm.geologi.v22i3.643
Fauza, N., Hermita, N., & Afriyani, E. (2023). Need Analysis to Develop a Physics Module Integrated Natural Disaster and Mitigation. Jurnal Penelitian Pendidikan IPA, 9(3), 1024–1029. https://doi.org/10.29303/jppipa.v9i3.3170
Febriarta, E., & Wibowo, Y. A. (2021). Kerentanan Gerakan Tanah Menggunakan Teknik Geospasial Statistik Di Macang Pacar, Nusa Tenggara Timur. Jurnal Geografi : Media Informasi Pengembangan dan Profesi Kegeografian, 18(1), 9–20. https://doi.org/10.15294/jg.v18i1.26234
Gojali, M. R., Tjahjono, B., & Rustiadi, E. (2020). Pemodelan Spasial Bahaya Longsor di Das Ciliwung Hulu, Kabupaten Bogor. Komputasi: Jurnal Ilmiah Ilmu Komputer dan Matematika, 17(1), 311-318. https://doi.org/10.33751/komputasi.v17i1.1745
Haribulan, R., & Gosal, P. H. (2019). Kajian Kerentanan Fisik Bencana Longsor di Kecamatan Tomohon Utara. Jurnal Perencanaan Wilayah dan Kota, 6(3). 714-724 Retrieved from https://ejournal.unsrat.ac.id/index.php/spasial/article/view/26015
Husdi, H., & Dalai, H. (2023). Penerapan Metode Regresi Linear Untuk Prediksi Jumlah Bahan Baku Produksi Selai Bilfagi. Jurnal Informatika, 10(2), 129–135. https://doi.org/10.31294/inf.v10i2.14129
Isneni, A. N., Putranto, T. T., & Trisnawati, D. (2020). Analisis Sebaran Daerah Rawan Longsor Menggunakan Remote Sensing dan Analytical Hierarchy Process (AHP) di Kabupaten Magelang Provinsi Jawa Tengah. Jurnal Geosains dan Teknologi, 3(3), 149–160. https://doi.org/10.14710/jgt.3.3.2020.149-160
Julianto, F. D., Putri, D. P. D., & Safi’i, H. H. (2020). Analisis Perubahan Vegetasi dengan Data Sentinel-2 menggunakan Google Earth Engine (Studi Kasus Provinsi Daerah Istimewa Yogyakarta). Jurnal Penginderaan Jauh Indonesia, 2(2). 13-18. Retrieved from https://journal.its.ac.id/index.php/jpji/article/view/262
Karimah, K., Susilo, A., Suryo, E. A., Rofiq, A., & Hasan, M. F. R. (2022a). 3D Modelling of Geoelectrical Resistivity Data to Determine the Direction of Landslides in Kastoba Lake, Bawean Island, Indonesia. Jurnal Penelitian Pendidikan IPA, 8(3), 1495–1502. https://doi.org/10.29303/jppipa.v8i3.1714
Karimah, K., Susilo, A., Suryo, E. A., Rofiq, A., & Hasan, M. F. R. (2022b). Analysis of Potential Landslide Areas Using Geoelectric Methods of Resistivity in The Kastoba Lake, Bawean Island, Indonesia. Jurnal Penelitian Pendidikan IPA, 8(2), 660–665. https://doi.org/10.29303/jppipa.v8i2.1414
Lasaiba, M. A., Ansiska, P., & Tetelepta, E. G. (2024). Analisis Spasial Daya Dukung Lahan dan Pertumbuhan Permukiman Di Kecamatan Sirimau. Jurnal Tanah dan Sumberdaya Lahan, 11(2), 367–377. https://doi.org/10.21776/ub.jtsl.2024.011.2.8
Mahlianurrahman, & Aprilia, R. (2024). Development of SETS-Based Independent Curriculum Learning Module Increases Understanding of Disaster Mitigation. Jurnal Penelitian Pendidikan IPA, 10(4), 1809–1815. https://doi.org/10.29303/jppipa.v10i4.5145
Maruddani, R. F., Somantri, L., & Panjaitan, F. (2024). Analisis Spasial Perubahan Tutupan Lahan Pasca Kebakaran Hutan dan Lahan di Kabupaten Muaro Jambi. Jurnal Tanah dan Sumberdaya Lahan, 11(2), 443–453. https://doi.org/10.21776/ub.jtsl.2024.011.2.15
Nachappa, T., Ghorbanzadeh, O., Gholamnia, K., & Blaschke, T. (2020). Multi-Hazard Exposure Mapping Using Machine Learning for the State of Salzburg, Austria. Remote Sensing, 12(17), 2757. https://doi.org/10.3390/rs12172757
Nugroho, D. D., & Nugroho, H. (2020). Analisis Kerentanan Tanah Longsor Menggunakan Metode Frequency Ratio di Kabupaten Bandung Barat, Jawa Barat. Geoid, 16(1), 8. https://doi.org/10.12962/j24423998.v16i1.7680
Palloan, P., Ansar, N. A., Sulistiawaty, & Susanto, A. (2023). Analysis of Soil Physical Parameters in Landslide Prone Areas in West Battang Village, Palopo City as Early Mitigation of Landslide Disasters. Jurnal Penelitian Pendidikan IPA, 9(11), 10230–10235. https://doi.org/10.29303/jppipa.v9i11.3031
Prabandari, A. A., & Manessa, M. D. M. (2024). Analisis Perkembangan Lahan Terbangun Berdasarkan Metode Supervised Classification Menggunakan Google Earth Engine (Studi Kasus: Desa Ciputi, Kecamatan Pacet, Kab.Cianjur). Jurnal Tanah dan Sumberdaya Lahan, 11(2), 403–412. https://doi.org/10.21776/ub.jtsl.2024.011.2.11
Pratiwi, S. F., Manessa, M. D. M., & Supriatna, S. (2022). Kajian dan Evaluasi Bencana Tanah Longsor di Kecamatan Tanjungsari terhadap RTRW Kabupaten Bogor. Jurnal Wilayah dan Lingkungan, 10(1), 86–96. https://doi.org/10.14710/jwl.10.1.86-96
Purnamasari, I., Abdillah, Moc. R. W., Wijayanto, Y., Saputra, T. W., Ristiyana, S., & Budiman, S. A. (2024). Karakter Spasial dan Temporal Curah Hujan Bulanan Kabupaten Jember Berdasarkan Data Chirps. Jurnal Tanah dan Sumberdaya Lahan, 11(2), 423–432. https://doi.org/10.21776/ub.jtsl.2024.011.2.13
Rabby, Y. W., Ishtiaque, A., & Rahman, Md. S. (2020). Evaluating the Effects of Digital Elevation Models in Landslide Susceptibility Mapping in Rangamati District, Bangladesh. Remote Sensing, 12(17), 2718. https://doi.org/10.3390/rs12172718
Raharja, B. (2023). Pemetaan Litologi Menggunakan Data Citra Multispektral Perbandingan antara Citra ASTER, Landsat 8 dan Sentinel-2. Jurnal Geologi dan Sumberdaya Mineral, 24(4), 181–194. https://doi.org/10.33332/jgsm.geologi.v24i4.797
Raharjo, P. D. (2013). Penggunaan Data Penginderaan Jauh Dalam Analisis Bentukan Lahan Asal Proses Fluvial di Wilayah Karangsambung. Media Informasi Pengembangan Ilmu dan Profesi Kegeografian. 10(2).
Raharjo, P. D., & Haryono, E. (2020). Sintesa Geomorfologi Antroposen Kawasan Cagar Alam Geologi Karangsambung Bagian Selatan. Jurnal Geografi Gea, 20(2), 141–150. https://doi.org/10.17509/gea.v20i2.27727
Ramadhan, F., Riyanto, I. A., Cahyadi, A., Naufal, M., Widyastuti, M., & Adji, T. N. (2021). Dampak Siklon Tropis Savannah Terhadap Karakteristik Hidrogeokimia Aliran pada Mata Air Guntur, Kawasan Karst Gunungsewu. Jurnal Geografi : Media Informasi Pengembangan dan Profesi Kegeografian, 18(2), 90–96. https://doi.org/10.15294/jg.v18i2.30293
Rivai, W., & Hanafi, F. (2021). Pemanfaatan Wahana Unmanned Aerial Vehicle (UAV) dan GPS (Global Positioning System) untuk Analisis Tingkat Kerugian Material Penduduk pada Daerah Rawan Tanah Longsor. Jurnal Geografi : Media Informasi Pengembangan dan Profesi Kegeografian, 18(2), 97–105. https://doi.org/10.15294/jg.v18i2.30763
Safriani, E. W., Somantri, L., Rohmat, D., Setiawan, I., Panjaitan, B. R., & Arifin, A. (2024). Pemodelan Spasial Dalam Mengidentifikasi Tingkat Kerentanan Banjir Di Kecamatan Mejobo, Kabupaten Kudus, Jawa Tengah, Indonesia. Jurnal Tanah Dan Sumberdaya Lahan, 11(2), 347–357. https://doi.org/10.21776/ub.jtsl.2024.011.2.6
Setyaningsih, W., & Kurniasari, N. (2016). Pola perilaku masyarakat dalam pengurangan resiko bencana tanah longsor di kecamatan banjarwangu kabupaten banjarnegara jawa tengah. Jurnal Geografi, 13(2), 217-224. Retrieved from https://journal.unnes.ac.id/nju/JG/article/download/7978/5532
Shafique, M. (2020). Spatial and temporal evolution of co-seismic landslides after the 2005 Kashmir earthquake. Geomorphology, 362, 107228. https://doi.org/10.1016/j.geomorph.2020.107228
Sharma, L. P., Patel, N., Ghose, M. K., & Debnath, P. (2015). Development and application of Shannon’s entropy integrated information value model for landslide susceptibility assessment and zonation in Sikkim Himalayas in India. Natural Hazards, 75(2), 1555–1576. https://doi.org/10.1007/s11069-014-1378-y
Sun, D., Wen, H., Wang, D., & Xu, J. (2020). A random forest model of landslide susceptibility mapping based on hyperparameter optimization using Bayes algorithm. Geomorphology, 362, 107201. https://doi.org/10.1016/j.geomorph.2020.107201
Ulfah, S., Marzuki, M., & Susilo, A. (2021). Analysis Vulnerability Disaster of Landslide in Lantan Village Using Geoelectric Data and Sentinel Image. Jurnal Penelitian Pendidikan IPA, 7(4), 794–801. https://doi.org/10.29303/jppipa.v7i4.915
Wang, Y., Fang, Z., & Hong, H. (2019). Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China. Science of The Total Environment, 666, 975–993. https://doi.org/10.1016/j.scitotenv.2019.02.263
Author Biographies
Rakhmad Fadillah, IPB University
Boedi Tjahjono, IPB University
Fifi Gus Dwiyanti, IPB University
License
Copyright (c) 2024 Rakhmad Fadillah, Boedi Tjahjono, Fifi Gus Dwiyanti
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).