Energy Potential Generated from Municipal Solid Waste (MSW) at Tamangapa Landfill in Makassar City
DOI:
10.29303/jppipa.v10i11.8536Published:
2024-11-25Issue:
Vol. 10 No. 11 (2024): NovemberKeywords:
Gasification, Inceneration, LHV, MSW, Tamangapa landfillResearch Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
This study aims to analyse the potential energy that can be generated from municipal solid waste (MSW) at Tamangapa landfill, check the adequacy of energy according to the target of 20 MW/day, and give consideration to WtE technologies that can be applied. The research began with a literature study, followed by a quantitative approach to calculate the potential energy that can be generated through incineration, gasification, pyrolysis, anaerobic digestion (AD) and fermentation WtE technologies. The results showed that the energy target of 20 MW/day from MSW in Makassar can be met through incineration (168.80 MW/day), gasification (28.29 MW/day) and pyrolysis (62.03 MW/day). However, if 20 MW/day is clean energy, then considering the energy conversion efficiency, 30.38 MW/day is obtained for incineration, 7.07 MW/day for gasification, and 15.51 MW/day for pyrolysis. Based on this calculation, only incineration technology can fulfil the 20 MW/day energy target as expected. In order to maximise the energy potential, it is recommended to use a combination of incineration WTE technologies for plastic, rubber, paper and fabric components, and pyrolysis for wood and food waste components.
References
Achinas, S., Achinas, V., & Euverink, G. J. W. (2017). A Technological Overview of Biogas Production from Biowaste. Engineering, 3(3), 299–307. https://doi.org/10.1016/J.ENG.2017.03.002
Adams, P., Bridgwater, T., Lea-Langton, A., Ross, A., & Watson, I. (2018). Biomass Conversion Technologies. In P. Thornley & P. Adams (Eds.), Greenhouse Gases Balances of Bioenergy Systems (pp. 107–139). Elsevier. https://doi.org/10.1016/B978-0-08-101036-5.00008-2
Afla, R. A., Martono, D. N., & Wahyono, S. (2023). Behaviour of Food Waste Home-Composting. Jurnal Penelitian Pendidikan IPA, 9(9), 6848–6853. https://doi.org/10.29303/jppipa.v9i9.4294
Ahmad, A. A., Zawawi, N. A., Kasim, F. H., Inayat, A., & Khasri, A. (2016). Assessing the gasification performance of biomass: A review on biomass gasification process conditions, optimization and economic evaluation. Renewable and Sustainable Energy Reviews, 53, 1333–1347. https://doi.org/10.1016/j.rser.2015.09.030
Akinshilo, A. (2019). Energy Potential From Municipal Solid Waste (MSW) for a Developing Metropolis. Journal of Thermal Engineering, 5(6), 196–204. https://doi.org/10.18186/thermal.654322
Akpan, U. G., Alhakim, A. A., & Ijah, U. J. J. (2008). Production of ethanol fuel from organic and food wastes. Leonardo Electronic Journal of Practices and Technologies, 7(13), 001–011. Retrieved from http://lejpt.academicdirect.org/A13/001_011.htm
Alauddin, Z. A. B. Z., Lahijani, P., Mohammadi, M., & Mohamed, A. R. (2010). Gasification of lignocellulosic biomass in fluidized beds for renewable energy development: A review. Renewable and Sustainable Energy Reviews, 14(9), 2852–2862. https://doi.org/10.1016/j.rser.2010.07.026
Andini. (2023). Makassar Kota Dunia, faktanya volume sampah capai 7.374,5 ton perbulan. In KabarMakassar.com. Retrieved from https://www.kabarmakassar.com/posts/view/23716/makassar-kota-dunia-faktanya-volume-sampah-capai-7-374-5-ton-perbulan.html#
Arias, S. A., Restrepo-Cuestas, B., & Jaramillo-Duque, Á. (2018). Electricity generation potential from solid waste in three Colombian municipalities. TecnoLógicas, 21(42), 111–128. https://doi.org/10.22430/22565337.782
Bibra, M., Rathinam, N. K., Johnson, G. R., & Sani, R. K. (2020). Single pot biovalorization of food waste to ethanol by Geobacillus and Thermoanaerobacter spp. Renewable Energy, 155, 1032–1041. https://doi.org/10.1016/j.renene.2020.02.093
Bibra, M., Samanta, D., Sharma, N. K., Singh, G., Johnson, G. R., & Sani, R. K. (2022). Food Waste to Bioethanol: Opportunities and Challenges. Fermentation, 9(1), 8. https://doi.org/10.3390/fermentation9010008
Carey, F. A. (2022). Organic Chemistry Organic Chemistry. In Organic Chemistry Frontiers (6th ed., Vol. 1261, Issue 6). Prentice Hall of India Private limited. http://dx.doi.org/10.1039/d1qo00478f
Chakraborty, M., Sharma, C., Pandey, J., & Gupta, P. K. (2013). Assessment of energy generation potentials of MSW in Delhi under different technological options. Energy Conversion and Management, 75, 249–255. https://doi.org/10.1016/j.enconman.2013.06.027
Chandra, W. (2023). Makassar dan Masalah Darurat Sampah. Retrieved from https://www.mongabay.co.id/2023/03/13/makassar-dan-masalah-darurat-sampah.
Chavan, D., Arya, S., & Kumar, S. (2022). Open dumping of organic waste: Associated fire, environmental pollution and health hazards. In Advanced Organic Waste Management (pp. 15–31). Elsevier. https://doi.org/10.1016/B978-0-323-85792-5.00014-9
Cheng, J. (2017). Biomass to Renewable Energy Processes, Second Edition. CRC Press. https://doi.org/10.1201/9781315152868
Czernik, S., & Bridgwater, A. V. (2004). Overview of Applications of Biomass Fast Pyrolysis Oil. Energy & Fuels, 18(2), 590–598. https://doi.org/10.1021/ef034067u
Dar, R. A., Yaqoob, M., Parmar, M., & Phutela, U. G. (2019). Biofuels from Food Processing Wastes. In Materials Research Foundations (Vol. 46, pp. 249–288). https://doi.org/10.21741/9781644900116-10
DEN. (2014). Ketahanan Energi Indonesia Tahun 2014. Jakarta: Dewan Energi Nasional.
Deublein, D., & Steinhauser, A. (2008). Biogas from Waste and Renewable Resources. WILEY-VCH Verlag GmbH & Co.
Fatimah, S., Marwoto, P., & Nugroho, S. E. (2023). The Electrical Characteristics of Fruit Peel Waste as a Biobattery in Terms of Fermentation Time and Coconut (Cocos nucifera L.) Pulp Concentration. Jurnal Penelitian Pendidikan IPA, 9(SpecialIssue), 1008–1016. https://doi.org/10.29303/jppipa.v9iSpecialIssue.6477
Gandidi, I. M., Susila, M. D., Mustofa, A., & Pambudi, N. A. (2018). Thermal – Catalytic cracking of real MSW into Bio-Crude Oil. Journal of the Energy Institute, 91(2), 304–310. https://doi.org/10.1016/j.joei.2016.11.005
Gebauer, R. (2004). Mesophilic anaerobic treatment of sludge from saline fish farm effluents with biogas production. Bioresource Technology, 93(2), 155–167. https://doi.org/10.1016/j.biortech.2003.10.024
Gu, Q., Wu, W., Jin, B., & Zhou, Z. (2020). Analyses for Synthesis Gas from Municipal Solid Waste Gasification under Medium Temperatures. Processes, 8(1), 84. https://doi.org/10.3390/pr8010084
Hall, G. M., & Howe, J. (2012). Energy from waste and the food processing industry. Process Safety and Environmental Protection, 90(3), 203–212. https://doi.org/10.1016/j.psep.2011.09.005
Hasan, M. M., Rasul, M. G., Khan, M. M. K., Ashwath, N., & Jahirul, M. I. (2021). Energy recovery from municipal solid waste using pyrolysis technology: A review on current status and developments. Renewable and Sustainable Energy Reviews, 145(March), 111073. https://doi.org/10.1016/j.rser.2021.111073
Hermawan, F. (2017). Penerapan Teknologi Waste to Energy (WTE) Pada Rencana Pembangunan Intermediate Treatment Facility (ITF) Sunter Jakarta Utara (Dalam Kaitannya Terhadap Penanganan Permasalahan Sampah di Provinsi DKI Jakarta Menuju Pembangunan yang Berkelanjutan). Retrieved from https://upstdlh.id/article/post-8.
Hesnawi, R. M., & Mohamed, R. A. (2013). Effect of Organic Waste Source on Methane Production during Thermophilic Digestion Process. International Journal of Environmental Science and Development, 4(4), 435–437. https://doi.org/10.7763/IJESD.2013.V4.388
Heywood, J. (1998). Internal Combustion Engine Fundamentals. New York: McGraw-Hill Education.
Iribarren, D., Peters, J. F., & Dufour, J. (2012). Life cycle assessment of transportation fuels from biomass pyrolysis. Fuel, 97, 812–821. https://doi.org/10.1016/j.fuel.2012.02.053
Isahak, W. N. R. W., Hisham, M. W. M., Yarmo, M. A., & Yun Hin, T. (2012). A review on bio-oil production from biomass by using pyrolysis method. Renewable and Sustainable Energy Reviews, 16(8), 5910–5923. https://doi.org/10.1016/j.rser.2012.05.039
Islam, M. S., Miah, M. Y., Ismail, M., Jamal, M. S., Banik, S. K., & Saha, M. (1970). Production of Bio-Oil from Municipal Solid Waste by Pyrolysis. Bangladesh Journal of Scientific and Industrial Research, 45(2), 91–94. https://doi.org/10.3329/bjsir.v45i2.5703
Jain, P., Handa, K., & Paul, A. (2014). Studies on Waste-to-Energy Technologies in India & a detailed study of Waste-to-Energy Plants in Delhi. International Journal of Advanced Research, 2(1), 109–116. Retrieved from http://www.journalijar.com
Kabeyi, M. J. B., & Olanrewaju, O. A. (2022). Biogas Production and Applications in the Sustainable Energy Transition. Journal of Energy, 2022, 1–43. https://doi.org/10.1155/2022/8750221
Kalyani, K. A., & Pandey, K. K. (2014). Waste to energy status in India: A short review. Renewable and Sustainable Energy Reviews, 31, 113–120. https://doi.org/10.1016/j.rser.2013.11.020
Khairunnisa, A., Suryadi, A., Hufad, A., & Wahyudin, U. (2023). Waste Care Education for Housewives. Jurnal Penelitian Pendidikan IPA, 9(10), 8217–8225. https://doi.org/10.29303/jppipa.v9i10.5272
Khan, I. (2020). Waste to biogas through anaerobic digestion: Hydrogen production potential in the developing world - A case of Bangladesh. International Journal of Hydrogen Energy, 45(32), 15951–15962. https://doi.org/10.1016/j.ijhydene.2020.04.038
Khushboo, Ankush, Yadav, K., Mandal, M. K., Pal, S., Chaudhuri, H., & Dubey, K. K. (2020). Bioeconomy of municipal solid waste (MSW) using gas fermentation. In Current Developments in Biotechnology and Bioengineering (pp. 289–304). Elsevier. https://doi.org/10.1016/B978-0-444-64321-6.00015-X
Kim, Y. S., Jang, J. Y., Park, S. J., & Um, B. H. (2018). Dilute sulfuric acid fractionation of Korean food waste for ethanol and lactic acid production by yeast. Waste Management, 74, 231–240. https://doi.org/10.1016/j.wasman.2018.01.012
Knoef. (2012). Handbook Biomass Gasification, 2nd Ed. Enschede: BTG Biomass Technology Group.
Knox, A. (2005). An Overview of Incineration and EFW Technology as Applied to the Management of Municipal Solid Waste (MSW). University of Western Ontario.
Kosseva, M. R. (2011). Management and Processing of Food Wastes. In Comprehensive Biotechnology (pp. 557–593). Elsevier. https://doi.org/10.1016/B978-0-08-088504-9.00393-7
Kothari, R., Tyagi, V. V., & Pathak, A. (2010). Waste-to-energy: A way from renewable energy sources to sustainable development. Renewable and Sustainable Energy Reviews, 14(9), 3164–3170. https://doi.org/10.1016/j.rser.2010.05.005
Kumar, A., & Samadder, S. R. (2017). A review on technological options of waste to energy for effective management of municipal solid waste. Waste Management, 69, 407–422. https://doi.org/10.1016/j.wasman.2017.08.046
Lombardi, L., Carnevale, E., & Corti, A. (2015). A review of technologies and performances of thermal treatment systems for energy recovery from waste. Waste Manag, 37, 26–44. https://doi.org/10.1016/j.wasman.2014.11.010
Mahmoodi, P., Karimi, K., & Taherzadeh, M. J. (2018). Efficient conversion of municipal solid waste to biofuel by simultaneous dilute-acid hydrolysis of starch and pretreatment of lignocelluloses. Energy Conversion and Management, 166, 569–578. https://doi.org/10.1016/j.enconman.2018.04.067
McKendry, P. (2002). Energy production from biomass (part 2): conversion technologies. Bioresource Technology, 83(1), 47–54. https://doi.org/10.1016/S0960-8524(01)00119-5
Melville, L., Weger, A., Wiesgickl, S., & Franke, M. (2014). Anaerobic Digestion. In Transformation of Biomass (pp. 31–59). Wiley. https://doi.org/10.1002/9781118693643.ch2
Mujiarto, S., Sudarmanta, B., Fansuri, H., & Saleh, A. R. (2021). Comparative Study of Municipal Solid Waste Fuel and Refuse Derived Fuel in the Gasification Process Using Multi Stage Downdraft Gasifier. Automotive Experiences, 4(2), 97–103. https://doi.org/10.31603/ae.4625
Muliarta, I. N., Hariani, C. Y., Wahyuni, N. M. I., & Rismayanti, A. . T. (2023). Study of Potential Food Waste in Zero Waste Cities Area- Saridewi, Denpasar-Bali. Jurnal Penelitian Pendidikan IPA, 9(5), 2595–2603. https://doi.org/10.29303/jppipa.v9i5.3019
Nasir, I. M., Ghazi, T. I. M., & Omar, R. (2012). Production of biogas from solid organic wastes through anaerobic digestion: a review. Applied Microbiology and Biotechnology, 95(2), 321–329. https://doi.org/10.1007/s00253-012-4152-7
Novita, D. M., & Damanhuri, E. (2010). Jurnal Teknik Lingkungan. Jurnal Tehnik Lingkungan, 16(2), 103–115. https://doi.org/10.5614/jtl.2010.16.2.1
Pavlas, M., Touš, M., Klimek, P., & Bébar, L. (2011). Waste incineration with production of clean and reliable energy. Clean Technologies and Environmental Policy, 13(4), 595–605. https://doi.org/10.1007/s10098-011-0353-5
Pham, T. P. T., Kaushik, R., Parshetti, G. K., Mahmood, R., & Balasubramanian, R. (2015). Food waste-to-energy conversion technologies: Current status and future directions. Waste Management, 38, 399–408. https://doi.org/10.1016/j.wasman.2014.12.004
Prarikeslan, W., Nora, D., Mariya, S., Lovani, D., & Pratama, V. A. (2023). Community Empowerment through Organic Waste Processing. Jurnal Penelitian Pendidikan IPA, 9(11), 9447–9453. https://doi.org/10.29303/jppipa.v9i11.5448
Qanaze, M., & Qaffaf, H. (2021). Biochar From Municipal Solid Waste (MSW). An-Najah National University, Faculty of Engineering and Information Technology, Energy and Environment Engineering Department. Retrieved from https://repository.najah.edu/bitstreams/bd95c1c0-5b1c-40e5-a937-0a04479dac3a/download
Qazi, W. A., Abushammala, M. F., & Azam, M.-H. (2018). Multi-criteria decision analysis of waste-to-energy technologies for municipal solid waste management in Sultanate of Oman. Waste Management & Research: The Journal for a Sustainable Circular Economy, 36(7), 594–605. https://doi.org/10.1177/0734242X18777800
Rahma, A. N., Abbas, H. H., & Gafur, A. (2023). Konsentrasi Gas Amoniak (Nh3) Dan Gangguan Kesehatan Pada Pemulung Di TPA Tamangapa Kota Makassar. Journal of Aafiyah Health Research (JAHR), 4(2), 1–7. https://doi.org/10.52103/jahr.v4i2.1535.
Ramadhan, M. R. S., Ikhsan, M., Putra, R. M., Simatupang, J. W., Mau, S., & Kaburuan, E. R. (2021). Waste-to-Energy Potential Using Municipal Solid Waste as One Implementation of Jakarta Smart City. Jurnal Serambi Engineering, 6(4), 2382–2394. https://doi.org/10.32672/jse.v6i4.3499
Rusman, R. S., Syafri, S., & Ridwan, R. (2023). Evaluasi Lokasi Tempat Pemrosesan Akhir (TPA) Antang Perubahan Pemanfaatan Ruang Disekitarnya. Urban and Regional Studies Journal, 5(2), 87–91. https://doi.org/10.35965/ursj.v5i2.2690
Seo, Y.-C., Alam, M. T., & Yang, W.-S. (2018). Gasification of Municipal Solid Waste. In Gasification for Low-grade Feedstock. InTech. https://doi.org/10.5772/intechopen.73685
Septianingrum, D., Mizuno, K., & Herdiansyah, H. (2023). Extended Producer Responsibility for Waste Management Policy. Jurnal Penelitian Pendidikan IPA, 9(5), 2686–2692. https://doi.org/10.29303/jppipa.v9i5.3469
Setiawan, A. (2021). Membenahi Tata Kelola Sampah Indonesia. In Indonesia.Go.Id. Retrieved from https://indonesia.go.id/kategori/indonesia-dalam-angka/2533/membenahi-tata-kelola-sampah-nasional
SIPSN. (2021). Sistem Informasi Pengelolaan Sampah Nasional. Retrieved from https://sipsn.menlhk.go.id/sipsn/.
Stuckl, M., Jungbluth, N., & Leuenberger, M. (2012). Life Cycle Assessment of Biogas Production from Different Substrates. ESU-Services Ltd., 1–84. Retrieved from https://esu-services.ch/fileadmin/download/publicLCI/stucki-2011-biogas-substrates.pdf
Sun, C., Li, W., Chen, X., Li, C., Tan, H., & Zhang, Y. (2021). Synergistic interactions for saving energy and promoting the co-pyrolysis of polylactic acid and wood flour. Renewable Energy, 171, 254–265. https://doi.org/10.1016/j.renene.2021.02.099
Wang, L. J. (2013). Production of Bioenergy and Bioproducts from Food Processing Wastes: A Review. Transactions of the ASABE, 56(1), 217–230. https://doi.org/10.13031/2013.42572
Yunus, M. (2012). TPA Tamangapa Antang Terbakar, Api Semakin Membesar. Suara.Com. Retrieved from https://sulsel.suara.com/read/2021/08/12/200202/tpa-tamangapa-antang-terbakar-api-semakin-membesar
Zhou, J., Chen, Q., Zhao, H., Cao, X., Mei, Q., Luo, Z., & Cen, K. (2009). Biomass–oxygen gasification in a high-temperature entrained-flow gasifier. Biotechnology Advances, 27(5), 606–611. https://doi.org/10.1016/j.biotechadv.2009.04.011
Author Biographies
Andi Zulfikar Syaiful, Universitas Bosowa
M. Tang, Universitas Bosowa
Hermawati Hermawati, Universitas Bosowa
Djusdil Akrim, Universitas Bosowa
Annisa Sila Puspita, Universitas Diponegoro
License
Copyright (c) 2024 Andi Zulfikar Syaiful, M. Tang, Hermawati Hermawati, Djusdil Akrim, Annisa Sila Puspita

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).