Characterization Bio-Based Edible Film from Mango Seed Starch and Semi-Refined Carrageenan (Euchema cottonii) Using Sorbitol Plasticizer for Potential Food Contact Materials

Authors

DOI:

10.29303/jppipa.v10i10.8601

Published:

2024-10-31

Issue:

Vol. 10 No. 10 (2024): October

Keywords:

Characterization, Edible film, Elongation, Mango seed starch, Semi-Refined Carrageenan (SRC)

Research Articles

Downloads

How to Cite

Santi, S. S., Puspitawati, I. N., & Pasang, T. (2024). Characterization Bio-Based Edible Film from Mango Seed Starch and Semi-Refined Carrageenan (Euchema cottonii) Using Sorbitol Plasticizer for Potential Food Contact Materials. Jurnal Penelitian Pendidikan IPA, 10(10), 7976–7983. https://doi.org/10.29303/jppipa.v10i10.8601

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

Meanwhile, Semi-Refined Carrageenan (SRC) could be combined with starch as the base material for edible film fabrication to increase its tensile strength. This study aimed to identify edible film by synthesizing SRC and mango seed starch with plasticizer sorbitol, which could be safe for consumption in food packaging. The process of making edible film consists of three steps: extracting Eucheuma cottonii seaweed, making starch from mango seeds, and making edible film. The method used was the solution casting method, with a ratio of SRC: starch of mango seeds, namely 1: 0; 0.7: 0.3; and 0: 1 (w / w) and sorbitol concentrations of 20, 30, 40, 50, and 60% (w/w). This research shows that increasing sorbitol could decrease the tensile strength but increase the elongation and solubility of the edible film. As well as the combination of SRC and mango seed starch can produce edible films with higher characteristics than edible films based only on SRC or mango seed starch. The results of selecting the best conditions for an edible film based on the Japanese Industrial Standard (JIS) are the concentration ratio of SRC: mango seed starch (0.7: 0.3) and 30% sorbitol concentration with a thickness value of 0.22 mm, tensile strength 4.81 MPa, 28.50% elongation and 68.44% solubility

References

Adilah, A. N., Jamilah, B., Noranizan, M. A., & Hanani, Z. A. N. (2018). Utilization of Mango Peel Extracts on the Biodegradable Films for Active Packaging. Food Packaging and Shelf Life, 16, 1–7. https://doi.org/10.1016/j.fpsl.2018.01.006

Al-Hassan, A. A., & Norziah, M. H. (2012). Starch–Gelatin Edible Films: Water Vapor Permeability and Mechanical Properties as Affected by Plasticizers. Food Hydrocolloids, 26(1), 108–117. https://doi.org/10.1016/j.foodhyd.2011.04.015

Ballesteros-Mártinez, L., Pérez-Cervera, C., & Andrade-Pizarro, R. (2020). Effect of Glycerol and Sorbitol Concentrations on Mechanical, Optical, and Barrier Properties of Sweet Potato Starch Film. NFS Journal, 20, 1–9. https://doi.org/10.1016/j.nfs.2020.06.002

Balqis, A. M. I., Khaizura, M. A. R. N., Russly, A. R., & Hanani, Z. A. N. (2017). Effects of Plasticizers on the Physicochemical Properties of Kappa-Carrageenan Films Extracted from Eucheuma cottonii. International Journal of Biological Macromolecules, 103, 721–732. https://doi.org/10.1016/j.ijbiomac.2017.

105

Bangar, S. P., Kumar, M., & Whiteside, W. S. (2021). Mango Seed Starch: A Sustainable and Eco-Friendly Alternative to Increasing Industrial Requirements. International Journal of Biological Macromolecules, 183, 1807–1817. https://doi.org/10

.1016/j.ijbiomac.2021.05.157

Battisti, R., Fronza, N., Júnior, Á. V., Silveira, S. M. D., Damas, M. S. P., & Quadri, M. G. N. (2017). Gelatin-Coated Paper with Antimicrobial and Antioxidant Effects for Beef Packaging. Food Packaging and Shelf Life, 11, 115–124. https://doi.org/10.1016/j.fpsl.

01.009

Bharti, S. K., Pathak, V., Arya, A., Alam, T., Rajkumar, V., & Verma, A. K. (2021). Packaging Potential of Ipomoea batatas and κ‐Carrageenan Biobased Composite Edible Film: Its Rheological, Physicomechanical, Barrier and Optical Characterization. Journal of Food Processing and Preservation, 45(2). https://doi.org/10.1111/jfpp.

Bulatovic, V. O., Mandić, V., Grgić, D. K., & Ivančić, A. (2021). Biodegradable Polymer Blends Based on Thermoplastic Starch. Journal of Polymers and the Environment, 29(2), 492–508. https://doi.org/10.

/s10924-020-01874-w

Cabello, S. D. P., Takara, E. A., Marchese, J., & Ochoa, N. A. (2015). Influence of Plasticizers in Pectin Films: Microstructural Changes. Materials Chemistry and Physics, 162, 491–497. https://doi.org/10.1016/j.

matchemphys.2015.06.019

Eslami, Z., Elkoun, S., Robert, M., & Adjallé, K. (2023). A Review of the Effect of Plasticizers on the Physical and Mechanical Properties of Alginate-Based Films. Molecules, 28(18), 6637. https://doi.org/10.3390/

molecules28186637

Esmaeili, M., Pircheraghi, G., & Bagheri, R. (2017). Optimizing the Mechanical and Physical Properties of Thermoplastic Starch via Tuning the Molecular Microstructure Through Co‐Plasticization by Sorbitol and Glycerol. Polymer International, 66(6), 809–819. https://doi.org/10.1002/pi.5319

Ganesan, A. R., Shanmugam, M., Ilansuriyan, P., Anandhakumar, R., & Balasubramanian, B. (2019). Composite Film for Edible Oil Packaging from Carrageenan Derivative and Konjac glucomannan: Application and Quality Evaluation. Polymer Testing, 78, 105936. https://doi.org/10.1016/j.

polymertesting.2019.105936

Hamid, K. H. A., Saupy, N. A. Z. M., Zain, N. M., Mudalip, S. K. A., Shaarani, S. M., & Azman, N. A. M. (2018). Development and Characterization of Semi-Refined Carrageenan (SRC) Films from Eucheuma cottonii Incorporated with Glycerol and α-Tocopherol for Active Food Packaging Application. IOP Conference Series: Materials Science and Engineering, 458, 012022. https://doi.org/

1088/1757-899X/458/1/012022

Hamid, K. H. A., Yahaya, W. A. W., Saupy, N. M., Alia Z., Almajano, M. P., & Azman, N. A. M. (2019). Semi‐Refined Carrageenan Film Incorporated with α‐Tocopherol: Application in Food Model. Journal of Food Processing and Preservation, 43(5), e13937. https://doi.org/10.1111/jfpp.13937

Hamsina, H., Doan, F., Hermawati, H., Safira, I., & Hasani, R. (2024). Modification of Cassava Peel Starch, Substituting Chitosan and Seaweed: Production of High-Quality Edible Film. Jurnal Penelitian Pendidikan IPA, 10(2), 654–661. https://doi.org/10.29303/jppipa.v10i2.6428

Han, J. H. (2014). Edible Films and Coatings. In Innovations in Food Packaging (pp. 213–255). Elsevier. https://doi.org/10.1016/B978-0-12-394601-0.00009

-6

Khalil, H. P. S. A., Tye, Y. Y., Saurabh, C. K., Leh, C. P., Lai, T. K., Chong, E. W. N., Fazita, M. R. N., Hafiidz, J. M., Banerjee, A., & Syakir, M. I. (2017). Biodegradable Polymer Films from Seaweed Polysaccharides: A Review on Cellulose as a Reinforcement Material. Express Polymer Letters, 11(4), 244–265. https://doi.org/10.3144/expresspo

lymlett.2017.26

Liang, T., & Wang, L. (2018). Preparation and Characterization of a Novel Edible Film Based on Artemisia sphaerocephala Krasch. Gum: Effects of Type and Concentration of Plasticizers. Food Hydrocolloids, 77, 502–508. https://doi.org/10.1016

/j.foodhyd.2017.10.028

Manuhara, G. J., Praseptiangga, D., Muhammad, D. R. A., & Maimuni, B. H. (2016). Preparation and Characterization of Semi-Refined Kappa Carrageenan-Based Edible Film for Nano-Coating Application on Minimally Processed Food. AIP Conf. Proc., 1710, 030043. https://doi.org/10.1063/

4941509

Martins, B. A., Albuquerque, P. B. S. D., & Souza, M. P. D. (2022). Bio-Based Films and Coatings: Sustainable Polysaccharide Packaging Alternatives for the Food Industry. Journal of Polymers and the Environment, 30(10), 4023–4039. https://doi.org/10

.1007/s10924-022-02442-0

Mathew, S. S., Jaiswal, A. K., & Jaiswal, S. (2024). Carrageenan-Based Sustainable Biomaterials for Intelligent Food Packaging: A Review. Carbohydrate Polymers, 342, 122267. https://doi.org/10.1016/j.

carbpol.2024.122267

Moey, S. W., Abdullah, A., & Ahmad, I. (2014). Development, Characterization, and Potential Applications of Edible Film from Seaweed (Kappaphycus alvarezii). AIP Conf. Proc., 1614, 192–197. https://doi.org/10.1063/1.4895194

Paudel, S., Regmi, S., & Janaswamy, S. (2023). Effect of Glycerol and Sorbitol on Cellulose-Based Biodegradable Films. Food Packaging and Shelf Life, 37, 101090. https://doi.org/10.1016/j.fpsl.2023.

Perera, K. Y., Sharma, S., Pradhan, D., Jaiswal, A. K., & Jaiswal, S. (2021). Seaweed Polysaccharide in Food Contact Materials (Active Packaging, Intelligent Packaging, Edible Films, and Coatings). Foods, 10(9), 2088. https://doi.org/10.3390/foods1009208

Puscaselu, R. G., Lobiuc, A., Dimian, M., & Covasa, M. (2020). Alginate: From Food Industry to Biomedical Applications and Management of Metabolic Disorders. Polymers, 12(10), 2417. https://doi.org/

3390/polym12102417

Razavi, S. M. A., Amini, A. M., & Zahedi, Y. (2015). Characterization of a New Biodegradable Edible Film Based on Sage Seed Gum: Influence of Plasticizer Type and Concentration. Food Hydrocolloids, 43, 290–298. https://doi.org/10.1016

/j.foodhyd.2014.05.028

Rezaei, M., & Motamedzadegan, A. (2015). The Effect of Plasticizers on Mechanical Properties and Water Vapor Permeability of Gelatin-Based Edible Films Containing Clay Nanoparticles. World Journal of Nano Science and Engineering, 05(04), 178–193. https://doi.org/10.4236/wjnse.2015.54019

Sanyang, M., Sapuan, S., Jawaid, M., Ishak, M., & Sahari, J. (2015). Effect of Plasticizer Type and Concentration on Tensile, Thermal, and Barrier Properties of Biodegradable Films Based on Sugar Palm (Arenga pinnata) Starch. Polymers, 7(6), 1106–1124. https://doi.org/10.3390/polym7061106

Sedayu, B. B., Cran, M. J., & Bigger, S. W. (2020). Reinforcement of Refined and Semi-Refined Carrageenan Film with Nanocellulose. Polymers, 12(5), 1145. https://doi.org/10.3390/polym120511

Setyorini, D., & Nurcahyani, P. R. (2016). Effect of Addition of Semi-Refined Carrageenan on Mechanical Characteristics of Gum Arabic Edible Film. IOP Conference Series: Materials Science and Engineering, 128, 012011. https://doi.org/10.

/1757-899X/128/1/012011

Shiraiwa, T., Briffod, F., Enoki, M., & Yamazaki, K. (2022). Inverse Analysis of the Relationship between Three-Dimensional Microstructures and Tensile Properties of Dual-Phase Steels. Materials Today Communications, 33, 104958. https://doi.org/

1016/j.mtcomm.2022.104958

Silva, O. A., Pellá, M. G., Pellá, M. G., Caetano, J., Simões, M. R., Bittencourt, P. R. S., & Dragunski, D. C. (2019). Synthesis and Characterization of a Low Solubility Edible Film Based on Native Cassava Starch. International Journal of Biological Macromolecules, 128, 290–296. https://doi.org/10.

/j.ijbiomac.2019.01.132

Sogut, E., Balqis, A. M. I., Hanani, Z. A. N., & Seydim, A. C. (2019). The Properties of κ-Carrageenan and Whey Protein Isolate Blended Films Containing Pomegranate Seed Oil. Polymer Testing, 77, 105886. https://doi.org/10.1016/j.polymertesting.2019.05.002

Suderman, N., Isa, M. I. N., & Sarbon, N. M. (2018). The Effect of Plasticizers on the Functional Properties of Biodegradable Gelatin-Based Film: A Review. Food Bioscience, 24, 111–119. https://doi.org/10.1016/j.

fbio.2018.06.006

Tafa, K. D., Satheesh, N., & Abera, W. (2023). Mechanical Properties of Tef Starch-Based Edible Films: Development and Process Optimization. Heliyon, 9(2), e13160. https://doi.org/10.1016/j.heliyon.

e13160

Thakur, R., Pristijono, P., Scarlett, C. J., Bowyer, M., Singh, S. P., & Vuong, Q. V. (2019). Starch-Based Films: Major Factors Affecting Their Properties. International Journal of Biological Macromolecules, 132, 1079–1089. https://doi.org/10.1016/j.ijbiomac.201

03.190

Torres-León, C., Vicente, A. A., Flores-López, M. L., Rojas, R., Serna-Cock, L., Alvarez-Pérez, O. B., & Aguilar, C. N. (2018). Edible Films and Coatings Based on Mango (var. Ataulfo) by-Products to Improve the Gas Transfer Rate of Peach. LWT, 97, 624–631. https://doi.org/10.1016/j.lwt.2018.07.057

Vrijens, B., Antoniou, S., Burnier, M., de la Sierra, A., & Volpe, M. (2017). Current Situation of Medication Adherence in Hypertension. Front. Pharmacol., 8, 100. https://doi.org/10.3389/fphar.2017.00100

Zhang, P., Zhao, Y., & Shi, Q. (2016). Characterization of a Novel Edible Film Based on Gum Ghatti: Effect of Plasticizer Type and Concentration. Carbohydrate Polymers, 153, 345–355. https://doi.org/10.1016/j.

carbpol.2016.07.082

Zhang, Z., Qu, Z., Xu, L., Liu, R., Zhang, P., Zhang, Z., & Langdon, T. G. (2022). Relationship between Strength and Uniform Elongation of Metals Based on an Exponential Hardening Law. Acta Materialia, 231, 117866. https://doi.org/10.1016/j.actamat.

117866

Zia, K. M., Tabasum, S., Nasif, M., Sultan, N., Aslam, N., Noreen, A., & Zuber, M. (2017). A Review on Synthesis, Properties, and Applications of Natural Polymer-Based Carrageenan Blends and Composites. International Journal of Biological Macromolecules, 96, 282–301. https://doi.org/10.

/j.ijbiomac.2016.11.095

Author Biographies

Sintha Soraya Santi, Universitas Pembangunan NasionalVeteran

Ika Nawang Puspitawati, Universitas Pembangunan Nasional Veteran Jawa Timur

Tim Pasang, Universitas Pembangunan Nasional Veteran Jawa Timur

License

Copyright (c) 2024 Sintha Soraya Santi, Ika Nawang Puspitawati, Tim Pasang

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).