Potential Application of Aerobic Granular Sludge (AGS) Technology in Tofu Industry Wastewater Treatment
DOI:
10.29303/jppipa.v10i12.9072Published:
2025-01-06Issue:
Vol. 10 No. 12 (2024): DecemberKeywords:
Aerobic granular sludge (AGS), Biological treatment, Organic matter removal, Tofu industry, WastewaterReview
Downloads
How to Cite
Downloads
Metrics
Abstract
The tofu industry produces high protein food but produces wastewater with high organic matter and ammonia which is the result of protein breakdown in soybean seeds during the extraction process. Small and Medium Enterprises (SMEs) sometimes neglect waste treatment due to limited resources. Indonesian regulations stipulate special quality standards for wastewater in the Regulation of the Minister of Environment of the Republic of Indonesia No. 5 of 2014 concerning Wastewater Quality Standards for Soybean Processing Businesses and/or Activities. Indicators of organic matter pollution are characterized by the parameters BOD 150 mg/l, COD 300 mg/l, TSS 200 mg/l, and pH 5-9. Meanwhile, tofu industrial wastewater without special treatment can exceed the quality standard with BOD levels of 5.000-10.000 mg/l and COD levels of 7.000-12,000 mg/l. To overcome this problem apart from using activated sludge, researchers are exploring the use of Aerobic Granular Sludge (AGS) technology. AGS involves aggregate microorganisms in granules to treat wastewater efficiently. This increases treatment efficiency, reduces space requirements, and handles high organic loads effectively. Although aerobic granular technology is promising, research is still ongoing to better understand its characteristics and optimize applications in various industries and environmental conditions. This study aims to explore the potential application of Aerobic Granular Sludge (AGS) technology in treating tofu industrial wastewater with high organic matter content and significant ammonia content so that it meets permitted quality standards.
References
Abdoli, S., Asgari Lajayer, B., Dehghanian, Z., Bagheri, N., Vafaei, A. H., Chamani, M., Rani, S., Lin, Z., Shu, W., & Price, G. W. (2024). A Review of the Efficiency of Phosphorus Removal and Recovery from Wastewater by Physicochemical and Biological Processes: Challenges and Opportunities. Water, 16(17), 2507. https://doi.org/10.3390/w16172507
Adlimoghaddam, A., Sabbir, M. G., & Albensi, B. C. (2016). Ammonia as a Potential Neurotoxic Factor in Alzheimer’s Disease. Frontiers in Molecular Neuroscience, 9. https://doi.org/10.3389/fnmol.2016.00057
Aldoseri, A., Al-Khalifa, K. N., & Hamouda, A. M. (2024). AI-Powered Innovation in Digital Transformation: Key Pillars and Industry Impact. Sustainability, 16(5), 1790. https://doi.org/10.3390/su16051790
Ali, N. S. A., Muda, K., Mohd Amin, M. F., Najib, M. Z. M., Ezechi, E. H., & Darwish, M. S. J. (2021). Initialization, enhancement and mechanisms of aerobic granulation in wastewater treatment. Separation and Purification Technology, 260, 118220. https://doi.org/10.1016/j.seppur.2020.118220
Amrul, N. F., Kabir Ahmad, I., Ahmad Basri, N. E., Suja, F., Abdul Jalil, N. A., & Azman, N. A. (2022). A Review of Organic Waste Treatment Using Black Soldier Fly (Hermetia illucens). Sustainability, 14(8), 4565. https://doi.org/10.3390/su14084565
Bengtsson, S., De Blois, M., Wilén, B.-M., & Gustavsson, D. (2019). A comparison of aerobic granular sludge with conventional and compact biological treatment technologies. Environmental Technology, 40(21), 2769–2778. https://doi.org/10.1080/09593330.2018.1452985
Capodaglio, A., & Olsson, G. (2019). Energy Issues in Sustainable Urban Wastewater Management: Use, Demand Reduction and Recovery in the Urban Water Cycle. Sustainability, 12(1), 266. https://doi.org/10.3390/su12010266
Chaohui, X., Le, Z., Wang, Z., Zhang, Y., Gao, W., Wang, Y., & Sun, X. (2022). Remove of ammoniacal nitrogen wastewater by ultrasound/Mg/AlO/O. Chemosphere, 288, 132645. https://doi.org/10.1016/j.chemosphere.2021.132645
Chen, C., Ming, J., Yoza, B. A., Liang, J., Li, Q. X., Guo, H., Liu, Z., Deng, J., & Wang, Q. (2019). Characterization of aerobic granular sludge used for the treatment of petroleum wastewater. Bioresource Technology, 271, 353–359. https://doi.org/10.1016/j.biortech.2018.09.132
Clausen, P. A., Frederiksen, M., Sejbæk, C. S., Sørli, J. B., Hougaard, K. S., Frydendall, K. B., Carøe, T. K., Flachs, E. M., Meyer, H. W., Schlünssen, V., & Wolkoff, P. (2020). Chemicals inhaled from spray cleaning and disinfection products and their respiratory effects. A comprehensive review. International Journal of Hygiene and Environmental Health, 229, 113592. https://doi.org/10.1016/j.ijheh.2020.113592
De Sousa-Rollemberg, S. L., Mendes Barros, A. R., Milen Firmino, P. I., & Bezerra Dos Santos, A. (2018). Aerobic granular sludge: Cultivation parameters and removal mechanisms. Bioresource Technology, 270, 678–688. https://doi.org/10.1016/j.biortech.2018.08.130
Fitria, N., Ainiyah, F., Hamidah, U., Sintawardani, N., & Koesmawati, T. A. (2023). Effect of storage time on in-situ parameters and total nitrogen analysis results of tofu liquid waste samples. IOP Conference Series: Earth and Environmental Science, 1201(1), 012043. https://doi.org/10.1088/1755-1315/1201/1/012043
Gopinath, A., Divyapriya, G., Srivastava, V., Laiju, A. R., Nidheesh, P. V., & Kumar, M. S. (2021). Conversion of sewage sludge into biochar: A potential resource in water and wastewater treatment. Environmental Research, 194, 110656. https://doi.org/10.1016/j.envres.2020.110656
Guo, T., Pan, K., Chen, Y., Tian, Y., Deng, J., & Li, J. (2024). When aerobic granular sludge faces emerging contaminants: A review. Science of the Total Environment, 907, 167792. https://doi.org/10.1016/j.scitotenv.2023.167792
Guo, X., Ma, X., Niu, X., Li, Z., Wang, Q., Ma, Y., Cai, S., Li, P., & Li, H. (2024). The impacts of biodegradable and non-biodegradable microplastic on the performance and microbial community characterization of aerobic granular sludge. Frontiers in Microbiology, 15, 1389046. https://doi.org/10.3389/fmicb.2024.1389046
Guzmán-Fierro, V., Arriagada, C., Gallardo, J. J., Campos, V., & Roeckel, M. (2023). Challenges of aerobic granular sludge utilization: Fast start-up strategies and cationic pollutant removal. Heliyon, 9(2), e13503. https://doi.org/10.1016/j.heliyon.2023.e13503
Hamza, R. A., Iorhemen, O. T., & Tay, J. H. (2016). Advances in biological systems for the treatment of high-strength wastewater. Journal of Water Process Engineering, 10, 128–142. https://doi.org/10.1016/j.jwpe.2016.02.008
Hou, Y., Gan, C., Chen, R., Chen, Y., Yuan, S., & Chen, Y. (2021). Structural Characteristics of Aerobic Granular Sludge and Factors That Influence Its Stability: A Mini Review. Water, 13(19), 2726. https://doi.org/10.3390/w13192726
Hua, Y., & Ou, X. (2024). A Case Report of Severe Accidental Acute Ammonia Exposure. Journal of Burn Care & Research, 45(1), 250–252. https://doi.org/10.1093/jbcr/irad157
Jiang, Q., Chen, H., Fu, Z., Fu, X., Wang, J., Liang, Y., Yin, H., Yang, J., Jiang, J., Yang, X., Wang, H., Liu, Z., & Su, R. (2022). Current Progress, Challenges and Perspectives in the Microalgal-Bacterial Aerobic Granular Sludge Process: A Review. International Journal of Environmental Research and Public Health, 19(21), 13950. https://doi.org/10.3390/ijerph192113950
Jiang, Y., Shi, X., & Ng, H. Y. (2021). Aerobic granular sludge systems for treating hypersaline pharmaceutical wastewater: Start-up, long-term performances and metabolic function. Journal of Hazardous Materials, 412, 125229. https://doi.org/10.1016/j.jhazmat.2021.125229
Ksepko, E., Klimontko, J., & Kwiecinska, A. (2019). Industrial wastewater treatment wastes used as oxygen carriers in energy generation processes: A green chemistry approach. Journal of Thermal Analysis and Calorimetry, 138(6), 4247–4260. https://doi.org/10.1007/s10973-019-08214-8
Li, D., Yang, J., Li, Y., & Zhang, J. (2021). Research on rapid cultivation of aerobic granular sludge (AGS) with different feast-famine strategies in continuous flow reactor and achieving high-level denitrification via utilization of soluble microbial product (SMP). Science of The Total Environment, 786, 147237. https://doi.org/10.1016/j.scitotenv.2021.147237
Li, Y., Pan, L., Zeng, X., Zhang, R., Li, X., Li, J., Xing, H., & Bao, J. (2021). Ammonia exposure causes the imbalance of the gut-brain axis by altering gene networks associated with oxidative metabolism, inflammation and apoptosis. Ecotoxicology and Environmental Safety, 224, 112668. https://doi.org/10.1016/j.ecoenv.2021.112668
Liu, S., Zhou, M., Daigger, G. T., Huang, J., & Song, G. (2023). Granule formation mechanism, key influencing factors, and resource recycling in aerobic granular sludge (AGS) wastewater treatment: A review. Journal of Environmental Management, 338, 117771. https://doi.org/10.1016/j.jenvman.2023.117771
Matesun, J., Petrik, L., Musvoto, E., Ayinde, W., & Ikumi, D. (2024). Limitations of wastewater treatment plants in removing trace anthropogenic biomarkers and future directions: A review. Ecotoxicology and Environmental Safety, 281, 116610. https://doi.org/10.1016/j.ecoenv.2024.116610
Montesdeoca-Calderón, M.-G., Gil-Saura, I., Ruiz-Molina, M.-E., & Martin-Rios, C. (2024). Tackling food waste management: Professional training in the public interest. International Journal of Gastronomy and Food Science, 35, 100863. https://doi.org/10.1016/j.ijgfs.2023.100863
Nancharaiah, Y. V., & Sarvajith, M. (2019). Aerobic granular sludge process: A fast growing biological treatment for sustainable wastewater treatment. Current Opinion in Environmental Science & Health, 12, 57–65. https://doi.org/10.1016/j.coesh.2019.09.011
Nancharaiah, Y. V., & Sarvajith, M. (2022). Aerobic granular sludge for efficient biotransformation of chalcogen SeIV and TeIV oxyanions: Biological nutrient removal and biogenesis of Se0 and Te0 nanostructures. Journal of Hazardous Materials, 422, 126833. https://doi.org/10.1016/j.jhazmat.2021.126833
Oktorina, A. N., Achmad, Z., & Mary, S. (2019). Phytoremediation of tofu wastewater using Eichhornia crassipes. Journal of Physics: Conference Series, 1341(5), 052009. https://doi.org/10.1088/1742-6596/1341/5/052009
Pour, F. H., & Makkawi, Y. T. (2021). A review of post-consumption food waste management and its potentials for biofuel production. Energy Reports, 7, 7759–7784. https://doi.org/10.1016/j.egyr.2021.10.119
Purba, L. D. A., Ibiyeye, H. T., Yuzir, A., Mohamad, S. E., Iwamoto, K., Zamyadi, A., & Abdullah, N. (2020). Various applications of aerobic granular sludge: A review. Environmental Technology & Innovation, 20, 101045. https://doi.org/10.1016/j.eti.2020.101045
Salbitani, G., & Carfagna, S. (2021). Ammonium Utilization in Microalgae: A Sustainable Method for Wastewater Treatment. Sustainability, 13(2), 956. https://doi.org/10.3390/su13020956
Setianingsih, N. I., Hadiyanto, Budihardjo, M. A., Yuliasni, R., Malik, R. A., Budiono, Sudarno, & Warsito, B. (2024). Potential application and strategies of aerobic granular sludge (AGS) technology for wastewater treatment in Indonesia: A review. Desalination and Water Treatment, 320, 100756. https://doi.org/10.1016/j.dwt.2024.100756
Shameem, K. S., & Sabumon, P. C. (2023). A Review on the Stability, Sustainability, Storage and Rejuvenation of Aerobic Granular Sludge for Wastewater Treatment. Water, 15(5), 950. https://doi.org/10.3390/w15050950
Silva, J. A. (2023). Wastewater Treatment and Reuse for Sustainable Water Resources Management: A Systematic Literature Review. Sustainability, 15(14), 10940. https://doi.org/10.3390/su151410940
Singh, B. J., Chakraborty, A., & Sehgal, R. (2023). A systematic review of industrial wastewater management: Evaluating challenges and enablers. Journal of Environmental Management, 348, 119230. https://doi.org/10.1016/j.jenvman.2023.119230
Sonawane, J. M., Mahadevan, R., Pandey, A., & Greener, J. (2022). Recent progress in microbial fuel cells using substrates from diverse sources. Heliyon, 8(12), e12353. https://doi.org/10.1016/j.heliyon.2022.e12353
Strubbe, L., Pennewaerde, M., Baeten, J. E., & Volcke, E. I. P. (2022). Continuous aerobic granular sludge plants: Better settling versus diffusion limitation. Chemical Engineering Journal, 428, 131427. https://doi.org/10.1016/j.cej.2021.131427
Tamba, Y. R., Rahmat, A., & Solihat, R. (2023). Students’ Information Processing Abilities and Cognitive Processes in Biotechnology Learning. Jurnal Penelitian Pendidikan IPA, 9(SpecialIssue), 598–606. https://doi.org/10.29303/jppipa.v9iSpecialIssue.5021
Vaksmaa, A., Guerrero-Cruz, S., Ghosh, P., Zeghal, E., Hernando-Morales, V., & Niemann, H. (2023). Role of fungi in bioremediation of emerging pollutants. Frontiers in Marine Science, 10, 1070905. https://doi.org/10.3389/fmars.2023.1070905
Versino, F., Ortega, F., Monroy, Y., Rivero, S., López, O. V., & García, M. A. (2023). Sustainable and Bio-Based Food Packaging: A Review on Past and Current Design Innovations. Foods, 12(5), 1057. https://doi.org/10.3390/foods12051057
Wang, A., Zhang, X., Wang, H., & Xing, H. (2022). Recent evidence for toxic effects of NH3 exposure on lung injury: Protective effects of L-selenomethionine. Ecotoxicology and Environmental Safety, 242, 113937. https://doi.org/10.1016/j.ecoenv.2022.113937
Wang, H., Guo, L., Ren, X., Gao, M., Jin, C., Zhao, Y., Ji, J., & She, Z. (2022). Enhanced aerobic granular sludge by static magnetic field to treat saline wastewater via simultaneous partial nitrification and denitrification (SPND) process. Bioresource Technology, 350, 126891. https://doi.org/10.1016/j.biortech.2022.126891
Wang, K., Zhou, Z., Qiang, J., Yu, S., Wang, X., Yuan, Y., Zhao, X., Qin, Y., & Xiao, K. (2021). Emerging wastewater treatment strategy for efficient nitrogen removal and compact footprint by coupling mainstream nitrogen separation with chemical coagulation and biological aerated filter. Bioresource Technology, 320, 124389. https://doi.org/10.1016/j.biortech.2020.124389
Wilén, B.-M., Liébana, R., Persson, F., Modin, O., & Hermansson, M. (2018). The mechanisms of granulation of activated sludge in wastewater treatment, its optimization, and impact on effluent quality. Applied Microbiology and Biotechnology, 102(12), 5005–5020. https://doi.org/10.1007/s00253-018-8990-9
Wyer, K. E., Kelleghan, D. B., Blanes-Vidal, V., Schauberger, G., & Curran, T. P. (2022). Ammonia emissions from agriculture and their contribution to fine particulate matter: A review of implications for human health. Journal of Environmental Management, 323, 116285. https://doi.org/10.1016/j.jenvman.2022.116285
Zhang, Y., Yin, S., Li, H., Liu, J., Li, S., & Zhang, L. (2022). Treatment of ammonia‑nitrogen wastewater by the ultrasonic strengthened break point chlorination method. Journal of Water Process Engineering, 45, 102501. https://doi.org/10.1016/j.jwpe.2021.102501
Zou, J., Yang, J., Yu, F., Cai, L., Li, J., & Ganigué, R. (2023). Understanding the role of polyurethane sponges on rapid formation of aerobic granular sludge and enhanced nitrogen removal. Chemical Engineering Journal, 460, 141670. https://doi.org/10.1016/j.cej.2023.141670
Zueva, S., Ferella, F., Corradini, V., & Vegliò, F. (2024). Review of Organic Waste-to-Energy (OWtE) Technologies as a Part of a Sustainable Circular Economy. Energies, 17(15), 3797. https://doi.org/10.3390/en17153797
Author Biographies
Y. A. A. Hidayat, Universitas Diponegoro, Semarang
S Sumiyati, Universitas Diponegoro, Semarang
M. A. Budihardjo, Universitas Diponegoro, Semarang
N. I. Setianingsih, National Research and Innovation Agency, Jakarta
License
Copyright (c) 2024 Y. A. A. Hidayat, S Sumiyati, M. A. Budihardjo, N. I. Setianingsih
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).