Green Synthesis of Silver Nanoparticles Using Gempur Batu Leaf Extract (Ruellia napifera) as Antibacterial, Antibiofilm, and Antioxidant

Authors

I Wayan Tanjung Aryasa , Ni Putu Rahayu Artini , Putu Yudhistira Budhi Setiawan

DOI:

10.29303/jppipa.v10i12.9356

Published:

2024-12-26

Issue:

Vol. 10 No. 12 (2024): December

Keywords:

Antibacterial, Antibiofilm, Antioxidant, Gempur batu leaves, Green synthesis, Silver nanoparticles

Research Articles

Downloads

How to Cite

Aryasa, I. W. T., Artini, N. P. R., & Setiawan, P. Y. B. (2024). Green Synthesis of Silver Nanoparticles Using Gempur Batu Leaf Extract (Ruellia napifera) as Antibacterial, Antibiofilm, and Antioxidant. Jurnal Penelitian Pendidikan IPA, 10(12), 10556–10567. https://doi.org/10.29303/jppipa.v10i12.9356

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

Silver Nanoparticles basically focus on the synthesis of nano-sized particles produced through chemical, physical, and biological processes, which contribute significantly to the control of plant and animal diseases and have shown considerable promise in improving the quality of human living conditions and health. The method of making silver nanoparticles, namely Green synthesis, involves the use of plants for the synthesis process of various types of nanoparticles. Green synthesis has the advantages of a simple method, environmentally friendly, non-polluting, antitoxic, and cost-effective. The purpose of this study was to determine the antibacterial and antioxidant activities of AgNPs. In the spectrophotometer absorption spectrum appears at a wavelength of 450 nm. FTIR measurements were used to determine the presence of bioactive molecules that may be responsible for the stabilization that acts as a capping agent. The absorption spikes at 3256, 1552, 1048, and 934 cm−1 were determined for gempur batu leaf extract, while silver nanoparticles showed absorption spikes at 3369, 1576, 1080, and 822 cm−1. The results of XRD analysis of AgNPs showed that they had been successfully synthesized, which can be seen from the formation of narrow peaks indicating the crystalline nature of the formed nanoparticles. The results of TEM analysis of AgNPs in this study are a mixture of spherical, hexagonal, and triangular shapes of silver nanoparticles. The antibacterial activity test of silver nanoparticles with gempur batu leaf extract with variations in AgNO3 solution concentration has been successful, which is indicated by the formation of inhibition zones for Eschericia coli and Staphylococcus aureus bacteria. The results of antioxidant activity in AgNPss show an increasing percentage of inhibition along with increasing concentration of AgNPss increasing from 1 to 15 ppm and ascorbic acid increasing from 1 to 5 ppm. Antibiofilm activity in AgNPs has a good ability to inhibit the formation of biofilm layers in Staphylococcus aureus and Escherichia coli bacteria by having a biofilm inhibition percentage of more than 50%.

References

Ahmed, M. J., Murtaza, G., Rashid, F., & Iqbal, J. (2019). Eco-Friendly Green Synthesis of Silver Nanoparticles and Their Potential Applications as Antioxidant and Anticancer Agents. Drug Development and Industrial Pharmacy, 45(10), 1682-1694. https://doi.org/10.1080/03639045.2019.1656224

Akinboye, A. O., Makhubu, F. N., Karzis, J., Petzer, I. M., & McGaw, L. J. (2024). In Vitro Antibiofilm and Quorum Sensing Inhibition Activities of Selected South African Plants with Efficacy Against Bovine Mastitis Pathogens. South African Journal of Botany, 166, 455-465. https://doi.org/10.1016/j.sajb.2024.01.055.

Alhumaydhi, F. A. (2022). Green Synthesis of Gold Nanoparticles Using Extract of Pistacia chinensis and Their In Vitro and In Vivo Biological Activities. Journal of Nanomaterials, 2022(1), 5544475. https://doi.org/10.1155/2022/5544475

Anggraini, V., Eurika, N., & Komarayanti, S. (2018). Tumbuhan Lokal sebagai Bahan Baku Produk Minuman Herbal Fungsional di Kabupaten Jember. Bioma: Jurnal Biologi dan Pembelajaran Biologi, 3(2). https://doi.org/10.32528/bioma.v3i2.1613

Arya, A., & Chundawat, T. S. (2020). Metal Nanoparticles from Algae: A Green Approach for the Synthesis, Characterization and Their Biological Activity. Nanoscience & Nanotechnology-Asia, 10(3), 185-202. https://doi.org/10.2174/2210681209666181212153701

Aryasa, I. W. T., & Artini, N. P. R. (2022). Green Synthesis of Silver Nanoparticles Using Kayu Tulak Leaf (Schefflera Elliptica Harms) Infusion as a Bio-Reductant and Its Antibacterial Activity. Jurnal Kimia Sains dan Aplikasi, 25(6), 212-217. https://doi.org/10.14710/jksa.25.6.212-217

Aryasa, I. W. T., & Artini, N. P. R. (2023). Green Synthesis Silver Nanoparticles Using Sembung (Blumea balsamifera) Leaf Extract as an Antibacterial and Antioxidant. Jurnal Peneliatian Pendidikan IPA, 9(12), 11877-11886. https://doi.org/10.29303/jppipa.v9i12.6609

Bakshi, M., Ghosh, S., & Chaudhuri, P. (2015). Green Synthesis, Characterization and Antimicrobial Potential of Sliver Nanoparticles Using Three Mangrove Plants from Indian Sundarban. BioNanoScience, 5, 162-170. https://doi.org/10.1007/s12668-015-0175-8

Berridge, M. V., Herst, P. M., & Tan, A. S. (2005). Tetrazolium Dyes as Tools in Cell Biology: New Insights into Their Cellular Reduction. Biotechnology Annual Review, 11, 127-152. https://doi.org/10.1016/S1387-2656(05)11004-7

Bhuvaneswari, R., Xavier, R. J., & Arumugam, M. (2017). Facile Synthesis of Multifunctional Silver Nanoparticles Using Mangrove Plant Excoecaria agallocha L. for Its Antibacterial, Antioxidant and Cytotoxic Effects. Journal of Parasitic Diseases, 41(1), 180-187. https://doi.org/10.1007/s12639-016-0773-6

Castro-Aceituno, V., Ahn, S., Simu, S. Y., Singh, P., Mathiyalagan, R., Lee, H. A., & Yang, D. C. (2016). Anticancer Activity of Silver Nanoparticles from Panax Ginseng Fresh Leaves in Human Cancer Cells. Biomedicine & Pharmacotherapy, 84, 158-165. https://doi.org/10.1016/j.biopha.2016.09.016

Chaloupka, K., Malam, Y., & Seifalian, A. M. (2010). Nanosilver as a New Generation of Nanoproduct in Biomedical Applications. Trends in Biotechnology, 28(11), 580-588. https://doi.org/10.1016/j.tibtech.2010.07.006

Das, C. A., Kumar, V. G., Dhas, T. S., Karthick, V., Govindaraju, K., Joselin, J. M., & Baalamurugan, J. (2020). Antibacterial Activity of Silver Nanoparticles (Biosynthesis): A Short Review on Recent Advances. Biocatalysis and Agricultural Biotechnology, 27, 101593. https://doi.org/10.1016/j.bcab.2020.101593

Devaraj, P., Kumari, P., Aarti, C., & Renganathan, A. (2013). Synthesis and Characterization of Silver Nanoparticles Using Cannonball Leaves and Their Cytotoxic Activity Against MCF‐7 Cell Line. Journal of Nanotechnology, 2013(1), 598328. https://doi.org/10.1155/2013/598328

Ghasemi, S., Dabirian, S., Kariminejad, F., Koohi, D. E., Nemattalab, M., Majidimoghadam, S., ... & Yousefbeyk, F. (2024). Process Optimization for Green Synthesis of Silver Nanoparticles Using Rubus Discolor Leaves Extract and Its Biological Activities Against Multi-Drug Resistant Bacteria and Cancer Cells. Scientific Reports, 14(1), 4130. https://doi.org/10.1038/s41598-024-54702-9

Guidelli, E. J., Ramos, A. P., Zaniquelli, M. E. D., & Baffa, O. (2011). Green Synthesis of Colloidal Silver Nanoparticles Using Natural Rubber Latex Extracted from Hevea brasiliensis. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 82(1), 140-145. https://doi.org/10.1016/j.saa.2011.07.024

Hussain, I., Singh, N. B., Singh, A., Singh, H., & Singh, S. C. (2016). Green Synthesis of Nanoparticles and Its Potential Application. Biotechnology Letters, 38, 545-560. https://doi.org/10.1007/s10529-015-2026-7

Hussain, Z., Abourehab, M. A., Khan, S., & Thu, H. E. (2020). Silver Nanoparticles: A Promising Nanoplatform for Targeted Delivery of Therapeutics and Optimized Therapeutic Efficacy. In Metal Nanoparticles for Drug Delivery and Diagnostic Applications (pp. 141-173). Elsevier. https://doi.org/10.1016/B978-0-12-816960-5.00009-4

Isaac, R. R., Sakthivel, G., & Murthy, C. H. (2013). Green Synthesis of Gold and Silver Nanoparticles Using Averrhoa Bilimbi Fruit Extract. Journal of Nanotechnology, 2013(1), 906592. https://doi.org/10.1155/2013/906592

Ispiryan, A., Atkociuniene, V., Makstutiene, N., Sarkinas, A., Salaseviciene, A., Urbonaviciene, D., ... & Raudone, L. (2024). Correlation between Antimicrobial Activity Values and Total Phenolic Content/Antioxidant Activity in Rubus idaeus L. Plants, 13(4), 504. https://doi.org/10.3390/plants13040504

Javed, R., Zia, M., Naz, S., Aisida, S. O., Ain, N. U., & Ao, Q. (2020). Role of Capping Agents in the Application of Nanoparticles in Biomedicine and Environmental Remediation: Recent Trends and Future Prospects. Journal of Nanobiotechnology, 18, 1-15. https://doi.org/10.1186/s12951-020-00704-4

Krishnaraj, R. N., & Berchmans, S. (2013). In Vitro Antiplatelet Activity of Silver Nanoparticles Synthesized Using the Microorganism Gluconobacter roseus: An AFM-Based Study. RSC advances, 3(23), 8953-8959. https://doi.org/10.1039/C3RA41246F

Kumar, K. M., Sinha, M., Mandal, B. K., Ghosh, A. R., Kumar, K. S., & Reddy, P. S. (2012). Green Synthesis of Silver Nanoparticles Using Terminalia chebula Extract at Room Temperature and Their Antimicrobial Studies. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 91, 228-233. https://doi.org/10.1016/j.saa.2012.02.001

Kumar, S., Khan, H. M., Husain, F. M., Ahmad, R., Qais, F. A., Khan, M. A., ... & Lee, B. I. (2023). Antibacterial and Antibiofilm Activity of Abroma augusta Stabilized Silver (Ag) Nanoparticles Against Drug-Resistant Clinical Pathogens. Frontiers in Molecular Biosciences, 10, 1292509. https://doi.org/10.3389/fmolb.2023.1292509

Labulo, A. H., David, O. A., & Terna, A. D. (2022). Green Synthesis and Characterization of Silver Nanoparticles Using Morinda lucida Leaf Extract and Evaluation of Its Antioxidant and Antimicrobial Activity. Chemical Papers, 76(12), 7313-7325. https://doi.org/10.1007/s11696-022-02392-w

Liu, X., Lee, P. Y., Ho, C. M., Lui, V. C., Chen, Y., Che, C. M., ... & Wong, K. K. (2010). Silver Nanoparticles Mediate Differential Responses in Keratinocytes and Fibroblasts During Skin Wound Healing. ChemMedChem, 5(3), 468-475. https://doi.org/10.1002/cmdc.200900502

Mohammed, A. E., Al-Qahtani, A., Al-Mutairi, A., Al-Shamri, B., & Aabed, K. (2018). Antibacterial and Cytotoxic Potential of Biosynthesized Silver Nanoparticles by Some Plant Extracts. Nanomaterials, 8(6), 382. https://doi.org/10.3390/nano8060382

Moorthy, K., Chang, K. C., Yu, P. J., Wu, W. J., Liao, M. Y., Huang, H. C., ... & Chiang, C. K. (2022). Synergistic Actions of Phytonutrient Capped Nanosilver as a Novel Broad-Spectrum Antimicrobial Agent: Unveiling the Antibacterial Effectiveness and Bactericidal Mechanism. New Journal of Chemistry, 46(32), 15301-15312. https://doi.org/10.1039/D2NJ02469A

Nagaich, U., Gulati, N., & Chauhan, S. (2016). Antioxidant and Antibacterial Potential of Silver Nanoparticles: Biogenic Synthesis Utilizing Apple Extract. Journal of Pharmaceutics, 2016(1), 7141523. https://doi.org/10.1155/2016/7141523

Nguyen, D. D., & Lai, J. Y. (2022). Synthesis, Bioactive Properties, and Biomedical Applications of Intrinsically Therapeutic Nanoparticles for Disease Treatment. Chemical Engineering Journal, 435, 134970. https://doi.org/10.1016/j.cej.2022.134970

Nikmatin, S., Maddu, A., Purwanto, S., Mandang, T., & Purwanto, A. (2011). Analisa Struktur Mikro Pemanfaatan Limbah Kulit Rotan Menjadi Nanopartikel Selulosa sebagai Pengganti Serat Sintetis. Jurnal Biofisika, 7(1), 41-49. Retrieved from https://agris.fao.org/search/en/providers/122323/records/652fa3394a96c50901c9f777

Ounjaijean, S., Somsak, V., Saki, M., Mitsuwan, W., & Romyasamit, C. (2024). Antibacterial, Antibiofilm, and Antioxidant Activities of Aqueous Crude Gymnema inodorum Leaf Extract Against Vancomycin-Resistant Enterococcus faecium. Microorganisms, 12(7), 1399. https://doi.org/10.3390/microorganisms12071399

Pandit, C., Roy, A., Ghotekar, S., Khusro, A., Islam, M. N., Emran, T. B., ... & Bradley, D. A. (2022). Biological Agents for Synthesis of Nanoparticles and Their Applications. Journal of King Saud University-Science, 34(3), 101869. https://doi.org/10.1016/j.jksus.2022.101869

Pang, Y., Zhang, Y., Huang, L., Xu, L., Wang, K., Wang, D., ... & Xie, X. (2017). Effects and Mechanisms of Total Flavonoids from Blumea balsamifera (L.) DC. on Skin Wound in Rats. International Journal of Molecular Sciences, 18(12), 2766.https://doi.org/10.3390/ijms18122766

Rajeswari, R., Murugesh, S., Kumar, D. J., Prakash, B., & Gayathri, K. (2022). Characterisation and Evaluation of Antimicrobial, Antioxidant and Antibiofilm Activities of Silver Nanoparticles Biosynthesised from Harpullia arborea Bark Extract. Journal of Clinical & Diagnostic Research, 16(9). https://doi.org/10.7860/JCDR/2022/56639/16859

Ramamurthy, C. H., Sampath, K. S., Arunkumar, P., Kumar, M. S., Sujatha, V., Premkumar, K., & Thirunavukkarasu, C. (2013). Green Synthesis and Characterization of Selenium Nanoparticles and Its Augmented Cytotoxicity with Doxorubicin on Cancer Cells. Bioprocess and Biosystems Engineering, 36, 1131-1139. https://doi.org/10.1007/s00449-012-0867-1

Rigo, C., Ferroni, L., Tocco, I., Roman, M., Munivrana, I., Gardin, C., ... & Zavan, B. (2013). Active Silver Nanoparticles for Wound Healing. International Journal of Molecular Sciences, 14(3), 4817-4840. https://doi.org/10.3390/ijms14034817

Salari, S., Bahabadi, S. E., Samzadeh-Kermani, A., & Yosefzaei, F. (2019). In-Vitro Evaluation of Antioxidant and Antibacterial Potential of Green Synthesized Silver Nanoparticles Using Prosopis farcta Fruit Extract. Iranian Journal of Pharmaceutical Research: IJPR, 18(1), 430. https://doi.org/10.22037/ijpr.2019.2330

Sandasi, M., Leonard, C. M., & Viljoen, A. M. (2008). The Effect of Five Common Essential Oil Components on Listeria monocytogenes Biofilms. Food Control, 19(11), 1070-1075. https://doi.org/10.1016/j.foodcont.2007.11.006

Selem, E., Mekky, A. F., Hassanein, W. A., Reda, F. M., & Selim, Y. A. (2022). Antibacterial and Antibiofilm Effects of Silver Nanoparticles Against the Uropathogen Escherichia coli U12. Saudi Journal of Biological Sciences, 29(11), 103457. https://doi.org/10.1016/j.sjbs.2022.103457

Shahverdi, A. R., Fakhimi, A., Shahverdi, H. R., & Minaian, S. (2007). Synthesis and Effect of Silver Nanoparticles on the Antibacterial Activity of Different Antibiotics Against Staphylococcus aureus and Escherichia coli. Nanomedicine: Nanotechnology, Biology and Medicine, 3(2), 168-171. https://doi.org/10.1016/j.nano.2007.02.001

Sibbald, R. G., Contreras-Ruiz, J., Coutts, P., Fierheller, M., Rothman, A., & Woo, K. (2007). Bacteriology, Inflammation, and Healing: A Study of Nanocrystalline Silver Dressings in Chronic Venous Leg Ulcers. Advances in Skin & Wound Care, 20(10), 549-558. https://doi.org/10.1097/01.ASW.0000294757.05049.85

Singh, P., Kim, Y. J., & Yang, D. C. (2016). A Strategic Approach for Rapid Synthesis of Gold and Silver Nanoparticles by Panax ginseng Leaves. Artificial Cells, Nanomedicine, and Biotechnology, 44(8), 1949-1957. https://doi.org/10.3109/21691401.2015.1115410

Suárez-Cerda, J., Alonso-Nuñez, G., Espinoza-Gómez, H., & Flores-López, L. Z. (2015). Synthesis, Kinetics and Photocatalytic Study of “Ultra-Small” Ag-NPs Obtained by a Green Chemistry Method Using an Extract of Rosa ‘Andeli’ Double Delight Petals. Journal of Colloid and Interface Science, 458, 169-177. https://doi.org/10.1016/j.jcis.2015.07.049

Sudrajat, S., Sadani, S., & Sudiastuti, S. (2012). Analisis Fitokimia Senyawa Metabolit Sekunder Ekstrak Kasar Etanol Daun Meranti Merah (Shorea leprosula Miq.) dan Sifat Antibakterinya Terhadap Staphylococcus aureus dan Eschericia coli. Journal of Tropical Pharmacy and Chemistry, 1(4), 303-311. https://doi.org/10.25026/jtpc.v1i4.41

Tehri, N., Vashishth, A., Gahlaut, A., & Hooda, V. (2022). Biosynthesis, Antimicrobial Spectra and Applications of Silver Nanoparticles: Current Progress and Future Prospects. Inorganic and Nano-Metal Chemistry, 52(1), 1-19. https://doi.org/10.1080/24701556.2020.1862212

Tippayawat, P., Phromviyo, N., Boueroy, P., & Chompoosor, A. (2016). Green Synthesis of Silver Nanoparticles in Aloe vera Plant Extract Prepared by a Hydrothermal Method and Their Synergistic Antibacterial Activity. PeerJ, 4, e2589. https://doi.org/10.7717/peerj.2589

Vijayaraghavan, K., Nalini, S. K., Prakash, N. U., & Madhankumar, D. (2012). One Step Green Synthesis of Silver Nano/Microparticles Using Extracts of Trachyspermum ammi and Papaver somniferum. Colloids and Surfaces B: Biointerfaces, 94, 114-117. https://doi.org/10.1016/j.colsurfb.2012.01.026

Wahyuni, H. I., Shoukat, N., & Romadhon, N. (2023). Inventarisasi Pemanfaatan Tumbuhan dan Relevansinya sebagai Sumber Pembelajaran Ekopedagogik Berbasis Kearifan Lokal. Didaktika Biologi: Jurnal Penelitian Pendidikan Biologi, 7(1), 23-32. https://doi.org/10.32502/dikbio.v7i1.5709

Willian, N., Syukri, Z., Labanni, A., & Arief, S. (2020). Bio-friendly synthesis of Silver Nanoparticles Using Mangrove Rhizophora stylosa Leaf Aqueous Extract and Its Antibacterial and Antioxidant Activity. Rasayan Journal of Chemistry, 13(3), 1478-1485. https://doi.org/10.31788/RJC.2020.1335760

Zhang, L., Chen, J., Su, W. S., & Huang, J. J. (2013). Influence of Soy Isoflavone Tincture on Wound Healing of Deep Partial-Thickness Scald in Mice. Chinese Journal of Tissue Engineering Research, 17(2), 264. https://doi.org/10.3969/j.issn.2095-4344.2013.02.014

Zheng, K., Setyawati, M. I., Leong, D. T., & Xie, J. (2018). Antimicrobial Silver Nanomaterials. Coordination Chemistry Reviews, 357, 1-17. https://doi.org/10.1016/j.ccr.2017.11.019

Zulfiqar, H., Amjad, M. S., Mehmood, A., Mustafa, G., Binish, Z., Khan, S., ... & Lastra, J. M. P. D. L. (2022). Antibacterial, Antioxidant, and Phytotoxic Potential of Phytosynthesized Silver Nanoparticles Using Elaeagnus umbellata Fruit Extract. Molecules, 27(18), 5847. https://doi.org/10.3390/molecules27185847

Author Biographies

I Wayan Tanjung Aryasa, Universitas Bali Internasional

Ni Putu Rahayu Artini, Universitas Bali Internasional

Putu Yudhistira Budhi Setiawan, Universitas Bali Internasional

License

Copyright (c) 2024 I Wayan Tanjung Aryasa, Ni Putu Rahayu Artini, Putu Yudhistira Budhi Setiawan

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).