Vol. 11 No. 1 (2025): January
Open Access
Peer Reviewed

The Potential Of Fungi And Bacteria As α-Glucosidase Inhibitors For The Future Treatment Of Type 2 Diabetes

Authors

Edy Fachrial , Ismawati , Afif P Jati , Titania T Nugroho , Saryono

DOI:

10.29303/jppipa.v11i1.9457

Published:

2025-01-24

Downloads

Abstract

Diabetes, a disorder of hemostasis of carbohydrate and lipid metabolism, is one of today's leading killers. The most prevalent form of diabetes is type 2 diabetes mellitus (T2DM). Rapid hydrolysis of starch by pancreatic α-amylase and α-glucosidase, followed by intestinal absorption of glucose, causes a sudden increase in blood glucose. Available therapies for T2DM are oral insulin secretagogues, sulfonylureas, repaglinide, nateglinide, biguanides, thiazolidinediones, α-glucosidase, inhibitors and insulin. However, several hypoglycemic agents have limitations, such as side effects and increased diabetes complications. α-glucosidase inhibitors are structurally similar to natural oligosaccharides with a higher affinity for α-glucosidases, and they produce a reversible inhibition of membrane-bound intestinal α-glucoside hydrolase enzymes. This causes delayed carbohydrate absorption and digestion and results in a reduction in postprandial hyperglycemia. Natural α-glucosidase inhibitor drugs from natural sources can be used as a therapeutic approach to treat postprandial hyperglycemia for their assumed lower side effect and more affordable price than synthetic drugs. In this article, the author summarizes the potential of α-glucosidase inhibitors from microorganisms, namely fungi and bacteria, along with several active compounds with better activity than commercial α-glucosidase inhibitors.

Keywords:

Bacteria, Endophyte Fungi, α-Glucosidase Inhibitors

References

Akram, M. (2013). Diabetes Mellitus Type II: Treatment Strategies and Options: A Review. Journal of Diabetes & Metabolism, 04(09), 1–18. https://doi.org/10.4172/2155-6156.1000304

Al Mansour, M. A. (2020). The prevalence and risk factors of type 2 diabetes mellitus (DMT2) in a semi-urban Saudi population. International Journal of Environmental Research and Public Health, 17(1), 1–8. https://doi.org/10.3390/ijerph17010007

Angelini, P., Abdel-azeem, A. M., & Girometta, C. E. (2022). Editorial : Bioactive Compounds With Potential Medicinal Properties Derived From Fungi : Recent and Future Developments in Microbial Biotechnology. Frontiers in Microbiology, 13(February), 1–3. https://doi.org/10.3389/fmicb.2022.837586

Belayneh, Y. M., Mamo, T., Ahmed, S., & Kifle, Z. D. (2021). A retrospective study of drug related problems and contributing factors among type 2 diabetes mellitus patients on follow up at public health institutions of kemisse town, north east Ethiopia. Metabolism Open, 11, 1–6. https://doi.org/10.1016/j.metop.2021.100098

Christhudas, N., Praveen Kumar, P., & Agastian, P. (2013). In vitro α-glucosidase inhibition and antioxidative potential of an endophyte species (streptomyces sp. Loyola UGC) isolated from datura stramonium L. Current Microbiology, 67(1), 69–76. https://doi.org/10.1007/s00284-013-0329-2

Deshmukh, S. K., Gupta, M. K., Prakash, V., & Saxena, S. (2018). Endophytic fungi: A source of potential antifungal compounds. Journal of Fungi, 4(3), 2–42. https://doi.org/10.3390/jof4030077

Deshmukh, S. K., Prakash, V., & Ranjan, N. (2018). Marine fungi: A source of potential anticancer compounds. Frontiers in Microbiology, 8(JAN), 1–24. https://doi.org/10.3389/fmicb.2017.02536

Fardhani, R. A., & Aini. (2021). Screening of Lactobacillus Inhibitor Alpha Glucosidase Activity from Nira in Hyperglycemic Mice. Jurnal Biologi Tropis, 21, 792–798.

Fidien, K. A., Manguntungi, B., Sukmarini, L., Mustopa, A. Z., Triratna, L., Fatimah, & Kusdianawati. (2021). Diversity analysis, identification, and bioprospecting of lactic acid bacteria (Lab) isolated from sumbawa horse milk. Biodiversitas, 22(6), 3333–3340. https://doi.org/10.13057/biodiv/d220639

Fontana Pereira, D., Cazarolli, L. H., Lavado, C., Mengatto, V., Figueiredo, M. S. R. B., Guedes, A., Pizzolatti, M. G., & Silva, F. R. M. B. (2011). Effects of flavonoids on α-glucosidase activity: Potential targets for glucose homeostasis. Nutrition, 27(11–12), 1161–1167. https://doi.org/10.1016/j.nut.2011.01.008

Ghosal, S. (2019). The Side Effects Of Metformin - A Review. Diabetes & Metabolic Disorders, 6(1), 1–7. https://doi.org/10.24966/dmd-201x/100030

Habbu, D., Patil, D., Salagare, M., Madagundi, S., Vanakudri, R., Kulkarni, D., & Shukla, S. (2014). Antidiabetic Potential of Endophytic Bacterial Fraction of Murraya Koenigii (L.) Spreng.in Rats. Spatula DD - Peer Reviewed Journal on Complementary Medicine and Drug Discovery, 4(3), 139. https://doi.org/10.5455/spatula.20140826011114

Handayani, D., Artasasta, M. A., Safirna, N., Ayuni, D. F., Tallei, T. E., & Hertiani, T. (2020). Fungal isolates from marine sponge Chelonaplysilla sp.: Diversity, antimicrobial and cytotoxic activities. Biodiversitas, 21(5), 1954–1960. https://doi.org/10.13057/biodiv/d210523

He, K., Shi, J. C., & Mao, X. M. (2014). Safety and efficacy of acarbose in the treatment of diabetes in Chinese patients. Therapeutics and Clinical Risk Management, 10(1), 505–511. https://doi.org/10.2147/TCRM.S50362

Hussain, H., Nazir, M., Saleem, M., Al-Harrasi, A., Elizbit, & Green, I. R. (2021). Fruitful decade of fungal metabolites as anti-diabetic agents from 2010 to 2019: emphasis on α-glucosidase inhibitors. In Phytochemistry Reviews (Vol. 20, Issue 1). Springer Netherlands. https://doi.org/10.1007/s11101-020-09733-1

Indrianingsih, A. W., & Tachibana, S. (2017). α-Glucosidase inhibitor produced by an endophytic fungus, Xylariaceae sp. QGS 01 from Quercus gilva Blume. Food Science and Human Wellness, 6(2), 88–95. https://doi.org/10.1016/j.fshw.2017.05.001

Ingavat, N., Dobereiner, J., Wiyakrutta, S., Mahidol, C., Ruchirawat, S., & Kittakoop, P. (2009). Aspergillusol A, an r-Glucosidase Inhibitor from the Marine-Derived Fungus Aspergillus aculeatus. Journal of Natural Products, 72, 2049–2052.

Kharroubi, A. T. (2015). Diabetes mellitus: The epidemic of the century. World Journal of Diabetes, 6(6), 850. https://doi.org/10.4239/wjd.v6.i6.850

Kong, F., Zhao, C., Hao, J., Wang, C., Wang, W., Huang, X., & Zhu, W. (2015). New α-glucosidase inhibitors from a marine sponge-derived fungus, Aspergillus sp. OUCMDZ-1583. RSC Advances, 5(84), 68852–68863. https://doi.org/10.1039/c5ra11185d

Lichota, A., & Gwozdzinski, K. (2018). Anticancer activity of natural compounds from plant and marine environment. International Journal of Molecular Sciences, 19(11). https://doi.org/10.3390/ijms19113533

Malik, A., Ardalani, H., Anam, S., McNair, L. M., Kromphardt, K. J. K., Frandsen, R. J. N., Franzyk, H., Staerk, D., & Kongstad, K. T. (2020). Antidiabetic xanthones with α-glucosidase inhibitory activities from an endophytic Penicillium canescens. Fitoterapia, 142(January), 104522. https://doi.org/10.1016/j.fitote.2020.104522

Manahil, A., & Roopma, W. (2021). Alpha Glucosidase Inhibitors.

Manimegalai, K., Devi, N. K. A., & Padmavathy, S. (2013). Marine Fungi as a Source of Secondary Metabolites of Antibiotics. International Journal of Biotechnology and Bioengineering Research, 4(3), 2231–1238.

Marín-Peñalver, J. J., Martín-Timón, I., Sevillano-Collantes, C., & Cañizo-Gómez, F. J. del. (2016). Update on the treatment of type 2 diabetes mellitus. World Journal of Diabetes, 7(17), 354. https://doi.org/10.4239/wjd.v7.i17.354

Munasaroh, S., Tamat, S. R., & Dewi, R. T. (2018). Isolation and identification of a-glucosidase inhibitor from aspergillus terreus F38. Indonesian Journal of Pharmacy, 29(2), 74–79. https://doi.org/10.14499/indonesianjpharm29iss2pp74

Munim, A., Ramadhan, M. G., & Soemiati, A. (2013). Screening of Endophytic Fungi From Cassia Siamea Lamk Leaves As Α-Glucosidase Inhibitor. International Research Journal of Pharmacy, 4(5), 128–131. https://doi.org/10.7897/2230-8407.04526

Nandinsuren, T., Shi, W., Zhang, A. L., Bai, Y. Bin, & Gao, J. M. (2016). Natural products as sources of new fungicides (II): antiphytopathogenic activity of 2,4-dihydroxyphenyl ethanone derivatives. Natural Product Research, 30(10), 1166–1169. https://doi.org/10.1080/14786419.2015.1041140

Naquvi, K. J., Ahamad, J., Mir, S. R., Ali, M., & Shuaib, M. (2011). Review on Role of Natural Αlpha-Glucosidase Inhibitors for Management of Diabetes Mellitus. International Journal of Biomedical Research, 2(6). https://doi.org/10.7439/ijbr.v2i6.121

Nasri, H., & Rafieian-Kopaei, M. (2014). Metformin: Current knowledge. Journal of Research in Medical Sciences, 19(7), 658–664.

Nguyen, V. B., Nguyen, A. D., Kuo, Y. H., & Wang, S. L. (2017). Biosynthesis of α-glucosidase inhibitors by a newly isolated bacterium, Paenibacillus sp. TKU042 and its effect on reducing plasma glucose in a mouse model. International Journal of Molecular Sciences, 18(4). https://doi.org/10.3390/ijms18040700

Nisa, S., Shoukat, M., Bibi, Y., Al Ayoubi, S., Shah, W., Masood, S., Sabir, M., Asma Bano, S., & Qayyum, A. (2021). Therapeutic prospects of endophytic Bacillus species from Berberis lycium against oxidative stress and microbial pathogens. Saudi Journal of Biological Sciences, (In Press). https://doi.org/10.1016/j.sjbs.2021.08.099

Nurhayati, R., Frediansyah, A., Rahmawati, F., Retnaningrum, E., & Sembiring, L. (2015). Screening of α -glucosidase inhibitor-producing lactic acid bacteria from. International Conference on Appropriate Technology Development, August 2016, 76–80.

Nurhayati, R., Miftakhussolikhah, Frediansyah, A., & Rachmah, D. L. (2017). Lactic Acid Bacteria Producing Inhibitor of Alpha Glucosidase Isolated from Ganyong (Canna Edulis) and Kimpul (Xanthosoma sagittifolium). IOP Conference Series: Earth and Environmental Science, 101(1). https://doi.org/10.1088/1755-1315/101/1/012009

Osadebe, P., Odoh, E., & Uzor, P. (2014). Natural Products as Potential Sources of Antidiabetic Drugs. British Journal of Pharmaceutical Research, 4(17), 2075–2095. https://doi.org/10.9734/bjpr/2014/8382

Padhi, L., Laxmipriya Padhi, Y., Sujogya, K. M., & Panda, K. (2013). Endophytic fungi with great promises : A Review. Journal of Advanced Pharmacy Education & Research, 3(3), 152–170.

Pavithra, Sathish, Babu, N., Venkatarathanamma, Pushpalatha, Reddy, B., & Ananda. (2014). Evaluation Of Α-Amylase, Α-Glucosidase And Aldose Reductase Inhibitors In Ethyl Acetate Extracts Of Endophytic Fungi Isolated From Anti-Diabetic Medicinal Plants. International Journal of Pharmaceutical Sciences and Research, 5(12), 5334–5341. https://doi.org/10.13040/IJPSR.0975-8232.5(12).5334-41

Prete, R., Alam, M. K., Perpetuini, G., Perla, C., Pittia, P., & Corsetti, A. (2021). Lactic acid bacteria exopolysaccharides producers: A sustainable tool for functional foods. Foods, 10(7), 1–27. https://doi.org/10.3390/foods10071653

Proença, C., Freitas, M., Ribeiro, D., Oliveira, E. F. T., Sousa, J. L. C., Tomé, S. M., Ramos, M. J., Silva, A. M. S., Fernandes, P. A., & Fernandes, E. (2017). α-Glucosidase inhibition by flavonoids: an in vitro and in silico structure–activity relationship study. Journal of Enzyme Inhibition and Medicinal Chemistry, 32(1), 1216–1228. https://doi.org/10.1080/14756366.2017.1368503

Qi, J., Wang, D., Yin, X., Zhang, Q., & Gao, J. M. (2020). New Metabolite With Inhibitory Activity Against α-Glucosidase and α-Amylase From Endophytic Chaetomium globosum. Natural Product Communications, 15(7), 1–9. https://doi.org/10.1177/1934578X20941338

Qiu, P., Liu, Z., Chen, Y., Cai, R., Chen, G., & She, Z. (2019). Secondary metabolites with α-Glucosidase inhibitory activity from the mangrove fungus mycosphaerella sp. SYSU-DZG01. Marine Drugs, 17(8), 1–11. https://doi.org/10.3390/md17080483

Ramdanis, R., Soemiati, A., & Mun’im, A. (2012). Isolation and α-Glucosidase inhibitory activity of endophytic fungi from mahogany (Swietenia macrophylla King) seeds. Int. J. Med. Arom. Plants, 2(3), 447–452.

Sabarianandh, J., Subha, V., & Manimekalai, K. (2020). Antidiabetic Activity of Red Marine Algae In Vitro: A Review. Annals of SBV, 9(1), 22–26. https://doi.org/10.5005/jp-journals-10085-8117

Saravanakumar, K., Rajendren, N., Kathiresan, K., & Wang, M. (2020). Medicinal Drug‐related Bioactive Agents from Marine Fungi. In Encyclopedia of Marine Biotechnology (pp. 2173–2190). https://doi.org/10.1002/9781119143802.ch98

Septiana, E., Rachman, F., Hapsari, Y., Yadi, Y., Bustanussalam, B., Rahmawati, S. I., Izzati, F. N., & Simanjuntak, P. (2019). The potential of Endophytic Fungal Extract Isolated from Cinnamon (Cinnamomum burmannii) as Antidiabetic and Antioxidant. Jurnal Kimia Sains Dan Aplikasi, 22(6), 275–282. https://doi.org/10.14710/jksa.22.6.275-282

Sharma, A., Kawarabayasi, Y., & Satyanarayana, T. (2012). Acidophilic bacteria and archaea: Acid stable biocatalysts and their potential applications. Extremophiles, 16(1), 1–19. https://doi.org/10.1007/s00792-011-0402-3

Shrestha, J. T. M., Shrestha, H., Prajapati, M., Karkee, A., & Maharjan, A. (2017). Adverse Effects of Oral Hypoglycemic Agents and Adherence to them among Patients with Type 2 Diabetes Mellitus in Nepal. Journal of Lumbini Medical College, 5(1), 34. https://doi.org/10.22502/jlmc.v5i1.126

Sivaramakrishnan, R., Rath, S., Kapilan, K., Kavitha, N., Kanchana, S., & Arumugam, M. (2020). In vitro anti-diabetic and anti-inflammatory activities of metabolites isolated from Marine Sponge, Heteronema erecta (Keller, 1889) and its in silico studies. Research Journal of Biotechnology, 15(12), 19–27.

Sudha, V., Govindaraj, R., Baskar, K., & Al-dhabi, N. A. (2013). Biological Properties of Endophytic Fungi. Brazilian Archives of Biology and Technology, 59(December), 1–7.

Susilowati, A., Dewi, C. P. Y., & Sari, S. L. A. (2019). Isolation and identification of endophytic bacteria from Salak Pondoh (Salacca edulis) fruit as a-glycosidase inhibitor producer. Biosaintifika: Journal of Biology & Biology Education, 11(3), 352–359.

Thantsha, M. S., Mamvura, C. I., & Booyens, J. (2012). Probiotics - What They Are, Their Benefits and Challenges. New Advances in the Basic and Clinical Gastroenterology, April. https://doi.org/10.5772/32889

Ukwatta, K. M., Lawrence, J. L., & Wijayarathna, C. D. (2019). The study of antimicrobial, anti-cancer, anti-inflammatory and α-glucosidase inhibitory activities of Nigronapthaphenyl, isolated from an extract of Nigrospora sphaerica. Mycology, 10(4), 222–228. https://doi.org/10.1080/21501203.2019.1620892

Unnikrishnan, P. S., Suthindhiran, K., & Jayasri, M. A. (2014). Inhibitory potential of turbinaria ornata against key metabolic enzymes linked to diabetes. BioMed Research International, 2014. https://doi.org/10.1155/2014/783895

Wang, C., Guo, L., Hao, J., Wang, L., & Zhu, W. (2016). α-Glucosidase Inhibitors from the Marine-Derived Fungus Aspergillus flavipes HN4-13. Journal of Natural Products, 79(11), 2977–2981. https://doi.org/10.1021/acs.jnatprod.6b00766

Wresdiyati, T., Sa’diah, S. I. T. I., Winarto, A. D. I., & Febriyani, V. (2015). Alpha-Glucosidase Inhibition and Hypoglycemic Activities of Sweitenia mahagoni Seed Extract. HAYATI Journal of Biosciences, 22(2), 73–78. https://doi.org/10.4308/hjb.22.2.73

Zuo, J., Ji, C. L., Xia, Y., Li, X., & Chen, J. W. (2014). Xanthones as α-glucosidase inhibitors from the antihyperglycemic extract of Securidaca inappendiculata. Pharmaceutical Biology, 52(7), 898–903. https://doi.org/10.3109/13880209.2013.872673

Author Biographies

Edy Fachrial, Universitas Riau

Ismawati, Universitas Riau

Afif P Jati, Indonesia Bioinformatics Research Center

Titania T Nugroho, Universitas Riau

Saryono, Universitas Riau

Downloads

Download data is not yet available.

How to Cite

Fachrial, E., Ismawati, Jati, A. P., Nugroho, T. T., & Saryono. (2025). The Potential Of Fungi And Bacteria As α-Glucosidase Inhibitors For The Future Treatment Of Type 2 Diabetes. Jurnal Penelitian Pendidikan IPA, 11(1), 10–19. https://doi.org/10.29303/jppipa.v11i1.9457