The Potential Of Fungi And Bacteria As α-Glucosidase Inhibitors For The Future Treatment Of Type 2 Diabetes

Authors

Edy Fachrial , Ismawati , Afif P Jati , Titania T Nugroho , Saryono

DOI:

10.29303/jppipa.v11i1.9457

Published:

2025-01-24

Issue:

Vol. 11 No. 1 (2025): In Progress

Keywords:

Bacteria, Endophyte Fungi, α-Glucosidase Inhibitors

Review

Downloads

How to Cite

Fachrial, E., Ismawati, Jati, A. P., Nugroho, T. T., & Saryono. (2025). The Potential Of Fungi And Bacteria As α-Glucosidase Inhibitors For The Future Treatment Of Type 2 Diabetes. Jurnal Penelitian Pendidikan IPA, 11(1), 10–19. https://doi.org/10.29303/jppipa.v11i1.9457

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

Diabetes, a disorder of hemostasis of carbohydrate and lipid metabolism, is one of today's leading killers. The most prevalent form of diabetes is type 2 diabetes mellitus (T2DM). Rapid hydrolysis of starch by pancreatic α-amylase and α-glucosidase, followed by intestinal absorption of glucose, causes a sudden increase in blood glucose. Available therapies for T2DM are oral insulin secretagogues, sulfonylureas, repaglinide, nateglinide, biguanides, thiazolidinediones, α-glucosidase, inhibitors and insulin. However, several hypoglycemic agents have limitations, such as side effects and increased diabetes complications. α-glucosidase inhibitors are structurally similar to natural oligosaccharides with a higher affinity for α-glucosidases, and they produce a reversible inhibition of membrane-bound intestinal α-glucoside hydrolase enzymes. This causes delayed carbohydrate absorption and digestion and results in a reduction in postprandial hyperglycemia. Natural α-glucosidase inhibitor drugs from natural sources can be used as a therapeutic approach to treat postprandial hyperglycemia for their assumed lower side effect and more affordable price than synthetic drugs. In this article, the author summarizes the potential of α-glucosidase inhibitors from microorganisms, namely fungi and bacteria, along with several active compounds with better activity than commercial α-glucosidase inhibitors.

References

Akram, M. (2013). Diabetes Mellitus Type II: Treatment Strategies and Options: A Review. Journal of Diabetes & Metabolism, 04(09), 1–18. https://doi.org/10.4172/2155-6156.1000304

Al Mansour, M. A. (2020). The prevalence and risk factors of type 2 diabetes mellitus (DMT2) in a semi-urban Saudi population. International Journal of Environmental Research and Public Health, 17(1), 1–8. https://doi.org/10.3390/ijerph17010007

Angelini, P., Abdel-azeem, A. M., & Girometta, C. E. (2022). Editorial : Bioactive Compounds With Potential Medicinal Properties Derived From Fungi : Recent and Future Developments in Microbial Biotechnology. Frontiers in Microbiology, 13(February), 1–3. https://doi.org/10.3389/fmicb.2022.837586

Belayneh, Y. M., Mamo, T., Ahmed, S., & Kifle, Z. D. (2021). A retrospective study of drug related problems and contributing factors among type 2 diabetes mellitus patients on follow up at public health institutions of kemisse town, north east Ethiopia. Metabolism Open, 11, 1–6. https://doi.org/10.1016/j.metop.2021.100098

Christhudas, N., Praveen Kumar, P., & Agastian, P. (2013). In vitro α-glucosidase inhibition and antioxidative potential of an endophyte species (streptomyces sp. Loyola UGC) isolated from datura stramonium L. Current Microbiology, 67(1), 69–76. https://doi.org/10.1007/s00284-013-0329-2

Deshmukh, S. K., Gupta, M. K., Prakash, V., & Saxena, S. (2018). Endophytic fungi: A source of potential antifungal compounds. Journal of Fungi, 4(3), 2–42. https://doi.org/10.3390/jof4030077

Deshmukh, S. K., Prakash, V., & Ranjan, N. (2018). Marine fungi: A source of potential anticancer compounds. Frontiers in Microbiology, 8(JAN), 1–24. https://doi.org/10.3389/fmicb.2017.02536

Fardhani, R. A., & Aini. (2021). Screening of Lactobacillus Inhibitor Alpha Glucosidase Activity from Nira in Hyperglycemic Mice. Jurnal Biologi Tropis, 21, 792–798.

Fidien, K. A., Manguntungi, B., Sukmarini, L., Mustopa, A. Z., Triratna, L., Fatimah, & Kusdianawati. (2021). Diversity analysis, identification, and bioprospecting of lactic acid bacteria (Lab) isolated from sumbawa horse milk. Biodiversitas, 22(6), 3333–3340. https://doi.org/10.13057/biodiv/d220639

Fontana Pereira, D., Cazarolli, L. H., Lavado, C., Mengatto, V., Figueiredo, M. S. R. B., Guedes, A., Pizzolatti, M. G., & Silva, F. R. M. B. (2011). Effects of flavonoids on α-glucosidase activity: Potential targets for glucose homeostasis. Nutrition, 27(11–12), 1161–1167. https://doi.org/10.1016/j.nut.2011.01.008

Ghosal, S. (2019). The Side Effects Of Metformin - A Review. Diabetes & Metabolic Disorders, 6(1), 1–7. https://doi.org/10.24966/dmd-201x/100030

Habbu, D., Patil, D., Salagare, M., Madagundi, S., Vanakudri, R., Kulkarni, D., & Shukla, S. (2014). Antidiabetic Potential of Endophytic Bacterial Fraction of Murraya Koenigii (L.) Spreng.in Rats. Spatula DD - Peer Reviewed Journal on Complementary Medicine and Drug Discovery, 4(3), 139. https://doi.org/10.5455/spatula.20140826011114

Handayani, D., Artasasta, M. A., Safirna, N., Ayuni, D. F., Tallei, T. E., & Hertiani, T. (2020). Fungal isolates from marine sponge Chelonaplysilla sp.: Diversity, antimicrobial and cytotoxic activities. Biodiversitas, 21(5), 1954–1960. https://doi.org/10.13057/biodiv/d210523

He, K., Shi, J. C., & Mao, X. M. (2014). Safety and efficacy of acarbose in the treatment of diabetes in Chinese patients. Therapeutics and Clinical Risk Management, 10(1), 505–511. https://doi.org/10.2147/TCRM.S50362

Hussain, H., Nazir, M., Saleem, M., Al-Harrasi, A., Elizbit, & Green, I. R. (2021). Fruitful decade of fungal metabolites as anti-diabetic agents from 2010 to 2019: emphasis on α-glucosidase inhibitors. In Phytochemistry Reviews (Vol. 20, Issue 1). Springer Netherlands. https://doi.org/10.1007/s11101-020-09733-1

Indrianingsih, A. W., & Tachibana, S. (2017). α-Glucosidase inhibitor produced by an endophytic fungus, Xylariaceae sp. QGS 01 from Quercus gilva Blume. Food Science and Human Wellness, 6(2), 88–95. https://doi.org/10.1016/j.fshw.2017.05.001

Ingavat, N., Dobereiner, J., Wiyakrutta, S., Mahidol, C., Ruchirawat, S., & Kittakoop, P. (2009). Aspergillusol A, an r-Glucosidase Inhibitor from the Marine-Derived Fungus Aspergillus aculeatus. Journal of Natural Products, 72, 2049–2052.

Kharroubi, A. T. (2015). Diabetes mellitus: The epidemic of the century. World Journal of Diabetes, 6(6), 850. https://doi.org/10.4239/wjd.v6.i6.850

Kong, F., Zhao, C., Hao, J., Wang, C., Wang, W., Huang, X., & Zhu, W. (2015). New α-glucosidase inhibitors from a marine sponge-derived fungus, Aspergillus sp. OUCMDZ-1583. RSC Advances, 5(84), 68852–68863. https://doi.org/10.1039/c5ra11185d

Lichota, A., & Gwozdzinski, K. (2018). Anticancer activity of natural compounds from plant and marine environment. International Journal of Molecular Sciences, 19(11). https://doi.org/10.3390/ijms19113533

Malik, A., Ardalani, H., Anam, S., McNair, L. M., Kromphardt, K. J. K., Frandsen, R. J. N., Franzyk, H., Staerk, D., & Kongstad, K. T. (2020). Antidiabetic xanthones with α-glucosidase inhibitory activities from an endophytic Penicillium canescens. Fitoterapia, 142(January), 104522. https://doi.org/10.1016/j.fitote.2020.104522

Manahil, A., & Roopma, W. (2021). Alpha Glucosidase Inhibitors.

Manimegalai, K., Devi, N. K. A., & Padmavathy, S. (2013). Marine Fungi as a Source of Secondary Metabolites of Antibiotics. International Journal of Biotechnology and Bioengineering Research, 4(3), 2231–1238.

Marín-Peñalver, J. J., Martín-Timón, I., Sevillano-Collantes, C., & Cañizo-Gómez, F. J. del. (2016). Update on the treatment of type 2 diabetes mellitus. World Journal of Diabetes, 7(17), 354. https://doi.org/10.4239/wjd.v7.i17.354

Munasaroh, S., Tamat, S. R., & Dewi, R. T. (2018). Isolation and identification of a-glucosidase inhibitor from aspergillus terreus F38. Indonesian Journal of Pharmacy, 29(2), 74–79. https://doi.org/10.14499/indonesianjpharm29iss2pp74

Munim, A., Ramadhan, M. G., & Soemiati, A. (2013). Screening of Endophytic Fungi From Cassia Siamea Lamk Leaves As Α-Glucosidase Inhibitor. International Research Journal of Pharmacy, 4(5), 128–131. https://doi.org/10.7897/2230-8407.04526

Nandinsuren, T., Shi, W., Zhang, A. L., Bai, Y. Bin, & Gao, J. M. (2016). Natural products as sources of new fungicides (II): antiphytopathogenic activity of 2,4-dihydroxyphenyl ethanone derivatives. Natural Product Research, 30(10), 1166–1169. https://doi.org/10.1080/14786419.2015.1041140

Naquvi, K. J., Ahamad, J., Mir, S. R., Ali, M., & Shuaib, M. (2011). Review on Role of Natural Αlpha-Glucosidase Inhibitors for Management of Diabetes Mellitus. International Journal of Biomedical Research, 2(6). https://doi.org/10.7439/ijbr.v2i6.121

Nasri, H., & Rafieian-Kopaei, M. (2014). Metformin: Current knowledge. Journal of Research in Medical Sciences, 19(7), 658–664.

Nguyen, V. B., Nguyen, A. D., Kuo, Y. H., & Wang, S. L. (2017). Biosynthesis of α-glucosidase inhibitors by a newly isolated bacterium, Paenibacillus sp. TKU042 and its effect on reducing plasma glucose in a mouse model. International Journal of Molecular Sciences, 18(4). https://doi.org/10.3390/ijms18040700

Nisa, S., Shoukat, M., Bibi, Y., Al Ayoubi, S., Shah, W., Masood, S., Sabir, M., Asma Bano, S., & Qayyum, A. (2021). Therapeutic prospects of endophytic Bacillus species from Berberis lycium against oxidative stress and microbial pathogens. Saudi Journal of Biological Sciences, (In Press). https://doi.org/10.1016/j.sjbs.2021.08.099

Nurhayati, R., Frediansyah, A., Rahmawati, F., Retnaningrum, E., & Sembiring, L. (2015). Screening of α -glucosidase inhibitor-producing lactic acid bacteria from. International Conference on Appropriate Technology Development, August 2016, 76–80.

Nurhayati, R., Miftakhussolikhah, Frediansyah, A., & Rachmah, D. L. (2017). Lactic Acid Bacteria Producing Inhibitor of Alpha Glucosidase Isolated from Ganyong (Canna Edulis) and Kimpul (Xanthosoma sagittifolium). IOP Conference Series: Earth and Environmental Science, 101(1). https://doi.org/10.1088/1755-1315/101/1/012009

Osadebe, P., Odoh, E., & Uzor, P. (2014). Natural Products as Potential Sources of Antidiabetic Drugs. British Journal of Pharmaceutical Research, 4(17), 2075–2095. https://doi.org/10.9734/bjpr/2014/8382

Padhi, L., Laxmipriya Padhi, Y., Sujogya, K. M., & Panda, K. (2013). Endophytic fungi with great promises : A Review. Journal of Advanced Pharmacy Education & Research, 3(3), 152–170.

Pavithra, Sathish, Babu, N., Venkatarathanamma, Pushpalatha, Reddy, B., & Ananda. (2014). Evaluation Of Α-Amylase, Α-Glucosidase And Aldose Reductase Inhibitors In Ethyl Acetate Extracts Of Endophytic Fungi Isolated From Anti-Diabetic Medicinal Plants. International Journal of Pharmaceutical Sciences and Research, 5(12), 5334–5341. https://doi.org/10.13040/IJPSR.0975-8232.5(12).5334-41

Prete, R., Alam, M. K., Perpetuini, G., Perla, C., Pittia, P., & Corsetti, A. (2021). Lactic acid bacteria exopolysaccharides producers: A sustainable tool for functional foods. Foods, 10(7), 1–27. https://doi.org/10.3390/foods10071653

Proença, C., Freitas, M., Ribeiro, D., Oliveira, E. F. T., Sousa, J. L. C., Tomé, S. M., Ramos, M. J., Silva, A. M. S., Fernandes, P. A., & Fernandes, E. (2017). α-Glucosidase inhibition by flavonoids: an in vitro and in silico structure–activity relationship study. Journal of Enzyme Inhibition and Medicinal Chemistry, 32(1), 1216–1228. https://doi.org/10.1080/14756366.2017.1368503

Qi, J., Wang, D., Yin, X., Zhang, Q., & Gao, J. M. (2020). New Metabolite With Inhibitory Activity Against α-Glucosidase and α-Amylase From Endophytic Chaetomium globosum. Natural Product Communications, 15(7), 1–9. https://doi.org/10.1177/1934578X20941338

Qiu, P., Liu, Z., Chen, Y., Cai, R., Chen, G., & She, Z. (2019). Secondary metabolites with α-Glucosidase inhibitory activity from the mangrove fungus mycosphaerella sp. SYSU-DZG01. Marine Drugs, 17(8), 1–11. https://doi.org/10.3390/md17080483

Ramdanis, R., Soemiati, A., & Mun’im, A. (2012). Isolation and α-Glucosidase inhibitory activity of endophytic fungi from mahogany (Swietenia macrophylla King) seeds. Int. J. Med. Arom. Plants, 2(3), 447–452.

Sabarianandh, J., Subha, V., & Manimekalai, K. (2020). Antidiabetic Activity of Red Marine Algae In Vitro: A Review. Annals of SBV, 9(1), 22–26. https://doi.org/10.5005/jp-journals-10085-8117

Saravanakumar, K., Rajendren, N., Kathiresan, K., & Wang, M. (2020). Medicinal Drug‐related Bioactive Agents from Marine Fungi. In Encyclopedia of Marine Biotechnology (pp. 2173–2190). https://doi.org/10.1002/9781119143802.ch98

Septiana, E., Rachman, F., Hapsari, Y., Yadi, Y., Bustanussalam, B., Rahmawati, S. I., Izzati, F. N., & Simanjuntak, P. (2019). The potential of Endophytic Fungal Extract Isolated from Cinnamon (Cinnamomum burmannii) as Antidiabetic and Antioxidant. Jurnal Kimia Sains Dan Aplikasi, 22(6), 275–282. https://doi.org/10.14710/jksa.22.6.275-282

Sharma, A., Kawarabayasi, Y., & Satyanarayana, T. (2012). Acidophilic bacteria and archaea: Acid stable biocatalysts and their potential applications. Extremophiles, 16(1), 1–19. https://doi.org/10.1007/s00792-011-0402-3

Shrestha, J. T. M., Shrestha, H., Prajapati, M., Karkee, A., & Maharjan, A. (2017). Adverse Effects of Oral Hypoglycemic Agents and Adherence to them among Patients with Type 2 Diabetes Mellitus in Nepal. Journal of Lumbini Medical College, 5(1), 34. https://doi.org/10.22502/jlmc.v5i1.126

Sivaramakrishnan, R., Rath, S., Kapilan, K., Kavitha, N., Kanchana, S., & Arumugam, M. (2020). In vitro anti-diabetic and anti-inflammatory activities of metabolites isolated from Marine Sponge, Heteronema erecta (Keller, 1889) and its in silico studies. Research Journal of Biotechnology, 15(12), 19–27.

Sudha, V., Govindaraj, R., Baskar, K., & Al-dhabi, N. A. (2013). Biological Properties of Endophytic Fungi. Brazilian Archives of Biology and Technology, 59(December), 1–7.

Susilowati, A., Dewi, C. P. Y., & Sari, S. L. A. (2019). Isolation and identification of endophytic bacteria from Salak Pondoh (Salacca edulis) fruit as a-glycosidase inhibitor producer. Biosaintifika: Journal of Biology & Biology Education, 11(3), 352–359.

Thantsha, M. S., Mamvura, C. I., & Booyens, J. (2012). Probiotics - What They Are, Their Benefits and Challenges. New Advances in the Basic and Clinical Gastroenterology, April. https://doi.org/10.5772/32889

Ukwatta, K. M., Lawrence, J. L., & Wijayarathna, C. D. (2019). The study of antimicrobial, anti-cancer, anti-inflammatory and α-glucosidase inhibitory activities of Nigronapthaphenyl, isolated from an extract of Nigrospora sphaerica. Mycology, 10(4), 222–228. https://doi.org/10.1080/21501203.2019.1620892

Unnikrishnan, P. S., Suthindhiran, K., & Jayasri, M. A. (2014). Inhibitory potential of turbinaria ornata against key metabolic enzymes linked to diabetes. BioMed Research International, 2014. https://doi.org/10.1155/2014/783895

Wang, C., Guo, L., Hao, J., Wang, L., & Zhu, W. (2016). α-Glucosidase Inhibitors from the Marine-Derived Fungus Aspergillus flavipes HN4-13. Journal of Natural Products, 79(11), 2977–2981. https://doi.org/10.1021/acs.jnatprod.6b00766

Wresdiyati, T., Sa’diah, S. I. T. I., Winarto, A. D. I., & Febriyani, V. (2015). Alpha-Glucosidase Inhibition and Hypoglycemic Activities of Sweitenia mahagoni Seed Extract. HAYATI Journal of Biosciences, 22(2), 73–78. https://doi.org/10.4308/hjb.22.2.73

Zuo, J., Ji, C. L., Xia, Y., Li, X., & Chen, J. W. (2014). Xanthones as α-glucosidase inhibitors from the antihyperglycemic extract of Securidaca inappendiculata. Pharmaceutical Biology, 52(7), 898–903. https://doi.org/10.3109/13880209.2013.872673

Author Biographies

Edy Fachrial, Universitas Riau

Ismawati, Universitas Riau

Afif P Jati, Indonesia Bioinformatics Research Center

Titania T Nugroho, Universitas Riau

Saryono, Universitas Riau

License

Copyright (c) 2025 Edy Fachrial, Ismawati, Afif P Jati, Titania T Nugroho, Saryono

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).