The Role of Natural Science in HRM at Industry 4.0 Era
DOI:
10.29303/jppipa.v10i12.9557Published:
2024-12-22Issue:
Vol. 10 No. 12 (2024): DecemberKeywords:
HRM, Industry 4.0, Natural, ScienceResearch Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
Natural sciences—particularly psychology and biology—can be applied to better understand human behavior, cognitive processes, stress responses, and other factors influencing workplace dynamics and employee well-being. Natural science relies on empirical evidence gathered through observation, experimentation, and data analysis. It aims to formulate theories and laws that explain the natural world and predict future outcomes. The emergence of Industry 4.0 has transformed the landscape of Human Resource Management (HRM) by introducing advanced technologies, including artificial intelligence (AI), machine learning, and big data analytics. These innovations have enhanced HRM processes such as recruitment, training, performance evaluation, and employee engagement. Natural sciences play a critical role in understanding the dynamics of these technological advancements, offering insights into human behavior, cognitive processes, and organizational ecosystems. This article explores how principles of natural science, including biology, psychology, and neuroscience, integrate with modern HRM practices in the 4.0 era. Through a qualitative approach, we examine case studies to illustrate the application of natural science in HR strategies, highlighting the advantages and challenges of adopting a scientifically-informed HRM framework.
References
Aggarwal, K., Mijwil, M. M., Al-Mistarehi, A.-H., Alomari, S., Gök, M., Alaabdin, A. M. Z., Abdulrhman, S. H., & others. (2022). Has the future started? The current growth of artificial intelligence, machine learning, and deep learning. Iraqi Journal for Computer Science and Mathematics, 3(1), 115–123. Retrieved from https://www.iasj.net/iasj/download/cefbfd60eb11898a
Atkins, P. W., Ratcliffe, R. G., de Paula, J., & Wormald, M. (2023). Physical chemistry for the life sciences. Oxford University Press.
Balouei Jamkhaneh, H., Shahin, A., Parkouhi, S. V., & Shahin, R. (2022). The new concept of quality in the digital era: a human resource empowerment perspective. The TQM Journal, 34(1), 125–144. https://doi.org/10.1108/tqm-01-2021-0030
Barrett, H. C. (2020). Towards a cognitive science of the human: cross-cultural approaches and their urgency. Trends in Cognitive Sciences, 24(8), 620–638. Retrieved from https://www.cell.com/trends/cognitive-sciences/abstract/S1364-6613(20)30131-5
Bock, K., & Garnsey, S. M. (2008). Language Processing. A Companion to Cognitive Science, 5(1), 226–234. https://doi.org/10.1002/9781405164535.ch14
Cao, L., Yang, Q., & Yu, P. S. (2021). Data science and AI in FinTech: an overview. International Journal of Data Science and Analytics, 12(2), 81–99. https://doi.org/10.1007/s41060-021-00278-w
Chakraborty, I., Chiong, K., Dover, H., & Sudhir, K. (2023). AI and AI-Human Based Salesforce Hiring using Conversational Interview Videos. Available at SSRN, 4137872. Retrieved from http://www-2.rotman.utoronto.ca/userfiles/brownbags/marketing/files/SalesVideoData-Toronto.pdf
Christian, Y., & Erline, M. (2022). Web-Based Chatbot With Natural Language Processing and Knuth-Morris-Pratt (Case Study: Universitas Internasional Batam). JST (Jurnal Sains Dan Teknologi), 11(1), 132–141. https://doi.org/10.23887/jstundiksha.v11i1.43258
Darmawan, D., Tinambunan, A. P., Hidayat, A. C., Sriharyati, S., Hamid, H., Estiana, R., Sono, M. G., Ramli, A., Sondeng, S., Mareta, S., & others. (2023). Manajemen Sumber Daya Manusia Era Digital. PT. Sonpedia Publishing Indonesia.
De Meuse, K. P., & Harvey, V. S. (2022). The science and application of learning agility: Introduction to the special issue. Consulting Psychology Journal, 74(3), 207. https://doi.org/10.1037/cpb0000233
Friedenberg, J., Silverman, G., & Spivey, M. J. (2021). Cognitive science: an introduction to the study of mind. Sage Publications.
Hadiono, A. (2023). High potential employee learning agility: individual differences, learning climate and the role of Human Resource Management (HRM) function [University of Glasgow]. Retrieved from https://theses.gla.ac.uk/83894/
Hofman, J. M., Watts, D. J., Athey, S., Garip, F., Griffiths, T. L., Kleinberg, J., Margetts, H., Mullainathan, S., Salganik, M. J., Vazire, S., & others. (2021). Integrating explanation and prediction in computational social science. Nature, 595(7866), 181–188. Retrieved from https://www.nature.com/articles/s41586-021-03659-0#auth-Alessandro-Vespignani-Aff15
Husen, S., Wahidah, R. N., & Mustajab, D. (2024). Evolution of HRM Strategies in the Digital Age: A Comprehensive Review. Amkop Management Accounting Review (AMAR), 4(1), 42–58. https://doi.org/10.37531/amar.v4i1.1535
Kaluarachchi, T., Reis, A., & Nanayakkara, S. (2021). A review of recent deep learning approaches in human-centered machine learning. Sensors, 21(7), 2514. https://doi.org/10.3390/s21072514
Kato, Y. (2020). AI/Fintech and Asset Management Businesses. Public Policy Review, 16(4), 1–28. Retrieved from https://ideas.repec.org/a/mof/journl/ppr16_04_04.html
Mari, A. (2024). The emergence of AI voice platforms: decision-making biases in consumers and managers [University of Zurich]. Retrieved from https://www.zora.uzh.ch/id/eprint/261985/1/261985.pdf
Mhlanga, D. (2020). Industry 4.0 in finance: the impact of artificial intelligence (ai) on digital financial inclusion. International Journal of Financial Studies, 8(3), 1–14. https://doi.org/10.3390/ijfs8030045
Mulyatun, S., Utama, H., & Mustopa, A. (2021). Pendekatan Natural Language Processing Pada Aplikasi Sistem Informasi Universitas Amikom Yogyakarta. Jurnal of Information System Management, 2(1), 12–17. Retrieved from https://jurnal.amikom.ac.id/index.php/joism/article/view/404
Omar, K. M. (2020). Key Elements of the HRM Challenges in the Technology Era 21st Century. Open Journal of Business and Management, 9(01), 32. Retrieved from https://www.scirp.org/html/2-1531589_105856.htm
Pessach, D., Singer, G., Avrahami, D., Ben-Gal, H. C., Shmueli, E., & Ben-Gal, I. (2020). Employees recruitment: A prescriptive analytics approach via machine learning and mathematical programming. Decision Support Systems, 134, 113290. https://doi.org/10.1016/j.dss.2020.113290
Primasari, I. (2023). Used of artificial intelligence for city branding: a design for smart tourism city. Jurnal Mantik, 7(3), 2243–2248. Retrieved from http://www.iocscience.org/ejournal/index.php/mantik/article/view/4316
Sihombing, D. O. (2022). Implementasi Natural Language Processing (NLP) dan Algoritma Cosine Similarity dalam Penilaian Ujian Esai Otomatis. Jurnal Sistem Komputer Dan Informatika (JSON), 4(2), 396. https://doi.org/10.30865/json.v4i2.5374
Stone, M., Aravopoulou, E., Ekinci, Y., Evans, G., Hobbs, M., Labib, A., Laughlin, P., Machtynger, J., & Machtynger, L. (2020). Artificial intelligence (AI) in strategic marketing decision-making: a research agenda. The Bottom Line, 33(2), 183–200. https://doi.org/10.1108/BL-03-2020-0022
Sugiono, S. (2021). Pemanfaatan Chatbot Pada Masa Pandemi COVID-19: Kajian Fenomena Society 5.0. Jurnal Penelitian Komunikasi Dan Pembangunan, 22(2), 133–148. Retrieved from https://shorturl.asia/pC0Zc
Talman, K., Vierula, J., Kanerva, A.-M., Virkki, O., Koivisto, J.-M., & Haavisto, E. (2021). Instruments for assessing reasoning skills in higher education: A scoping review. Assessment & Evaluation in Higher Education, 46(3), 376–392. https://doi.org/10.1080/02602938.2020.1776212
Trivedi, C., Bhattacharya, P., Prasad, V. K., Patel, V., Singh, A., Tanwar, S., Sharma, R., Aluvala, S., Pau, G., & Sharma, G. (2024). Explainable AI for Industry 5.0: Vision, Architecture, and Potential Directions. IEEE Open Journal of Industry Applications. https://doi.org/10.1109/OJIA.2024.3399057
Wang, C., Zhang, F., Wang, J., Doyle, J. K., Hancock, P. A., Mak, C. M., & Liu, S. (2021). How indoor environmental quality affects occupants’ cognitive functions: A systematic review. Building and Environment, 193, 107647. https://doi.org/10.1016/j.buildenv.2021.107647
Author Biographies
Didik Hadiyatno, University of Balikpapan
Dwi Taufik Rohman, University of Balikpapan
Tutik Yuliani, University of Balikpapan
Wiwik Saraswati, University of Balikpapan
License
Copyright (c) 2024 Didik Hadiyatno, Dwi Taufik Rohman, Tutik Yuliani, Wiwik Saraswati
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).