Strengthening Microalgae Biodiesel Production Capacity Based on Strain Selection for Chaetoceros amini, Nannochloropsis oculata and Nitzschia spp.

Authors

Suripto , Lalu Japa

DOI:

10.29303/jppipa.v10i12.9589

Published:

2024-12-20

Issue:

Vol. 10 No. 12 (2024): In Progress

Keywords:

Microalgae, Oil, Salinity stress, Strains

Research Articles

Downloads

How to Cite

Suripto, S., & Japa, L. (2024). Strengthening Microalgae Biodiesel Production Capacity Based on Strain Selection for Chaetoceros amini, Nannochloropsis oculata and Nitzschia spp. Jurnal Penelitian Pendidikan IPA, 10(12), 10083–10093. https://doi.org/10.29303/jppipa.v10i12.9589

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

Increasing microalgae biodiesel production through improvement of biomass production is reversible and is often considered economically unprofitable. This research aims to determine the effect of various levels of media salinity stress in producing microalgae strains that have higher oil content than the original population. Three species of microalgae are known to be capable of producing biodiesel, namely Chaeticheros amini, Nannochloropsis oculata and Nitzschia spp. isolated from Sekotong coastal waters, West Lombok, then cultivated in bioreactor systems for seven days with salinity stress treatment to produce strains. The resulting strains were cultivated again, but without salinity stress. Microalgae cell density was observed every day and harvested on the seventh day. The resulting microalgae biomass was extracted in stages to produce biodiesel oil. The results showed that after cultivation under salinity stress, S20, S25, S30, and S35 strains were produced from each of these species. Under salinity stress, all strains except S25 of Nitzschia spp. showed a higher maximum cell density compared to the original population and were reversible respectively. Each of the S25 strains of C. amini and N. oculata, S20 and S25 strains of Nitzschia spp., had a higher oil content than the original population, each of which was permanent

References

Ağbulut, U., Sirohi, R., Lichtfouse, E., Chen, W-A., Len, C., Show, P. L., Le, A. T., Nguyen, X. P., & Hoang, A. T. (2023). Microalgae Bio-Oil Production by Pyrolysis and Hydrothermal Liquefaction: Mechanism and Characteristics. Bioresource Technology, 376, 128860. https://doi.org/10.1016/j.biortech.2023.128860

Ahmed, S. F., Rafa, S. J., Mehjabin, A., Tasannum, N., Ahmed, S., Mofijur, M., Lichtfouse, E., Almomani, F., Badruddin, I. A., & Kamangar, S. (2023). Bio-Oil from Microalgae: Materials, Production, Technique, and Future. Energy Reports, 10, 297–3314. https://doi.org/10.1016/j.egyr.2023.09.068

Antoni, J. S., Almandoz, G. O., Ferrario, M. E., Hernando, M. P., Varela, D. E., Rozema, P. D., Buma, A. G. J., Paparazzo, F. E., & Schloss, I. R. (2020). Response of a Natural Antarctic Phytoplankton Assemblage to Changes in Temperature and Salinity. Journal of Experimental Marine Biology and Ecology, 532, 151444. https://doi.org/10.1016/j.jembe.2020.151444

Baqi, F., Putri, R. S. I., & Mirzayanti, Y. W. (2022). Process for Making Biodiesel from Microalgae Nannochloropsis sp. Using the In-Situ Transesterification Method with KOH Catalyst. Equilibrium Journal of Chemical Engineering, 6(2), 91–97. https://dx.doi.org/10.20961/equilibrium.v6i2.6327

Cheng, J., Feng, J., Sun, J., Huang, Y., Zhou, J., & Cen, K. (2024). Enhancing the Lipid Content of the Diatom Nitzschia sp. by 60Co-γ Irradiation Mutation and High-Salinity Domestication. Energy, 78, 9-15. https://doi.org/10.1016/j.energy.2014.06.009

Chhandama, M. V. L., Ruatpuia, J. V. L., Ao, S., Chetia, A. C., Satyan, K. B., & Rokhum, S. L. (2023). Microalgae as a Sustainable Feedstock for Biodiesel and Other Production Industries: Prospects and Challenges. Energy Nexus, 12, 100255. https://doi.org/10.1016/j.nexus.2023.100255

Demirbas, A., & Demirbas, M. F. (2010). Algae Energy (Algae as a New Source of Biofuel). London: Springer-Verlag. Retrieved from https://books.google.co.id/books?hl=id&lr=&id=Cv_3jJ5hp0AC&oi=fnd&pg=PA1&dq=Demirbas,+A.+and+M.F.+Demirbas+(2010).&ots=oe6gSAL1LJ&sig=bbiIcUEkO_fa0wF4NqyCM6m_f08&redir_esc=y#v=onepage&q&f=false

Endrawati, H., & Riniatsih, I. (2013). Kadar Total Lipid Mikroalga Nannochloropsis oculata yang Dikultur dengan Suhu yang Berbeda. Buletin Oseanografi Marina, 1, 25-33. Retrieved from http://ejournal.undip.ac.id/index.php/buloma

Faisal, N. D., Azni, M. E., Hitam, S. M. S., Mohamad, R., & Noorain, R. (2024). Performance of Immobilized Chlorella vulgaris and Nannochloropsis oculata on Sponge Media in Down Flow Hanging Sponge (DHS) Reactor for High Strength Wastewater Treatment and Lipid Production. AIP Conf. Proc., 2923, 040018. https://doi.org/10.1063/5.0195589

Faried, M., Samer, M., Abdelsalam, E., Yousef, R. S., Attia, Y. A., & Ali, A. S. (2017). Biodiesel Production from Microalgae: Processes, Technologies and Recent Advancements. Renewable and Sustainable Energy Reviews, 79, 893-913. https://doi.org/10.1016/j.rser.2017.05.199

Febrinawati, N., Putri, B., & Hudaidah, S. (2020). Utilization Waste Vanamei Shrim Farming (Litopenaeus vanamei) as a Media Culture of Chaetoceros amami. Jurnal Perikanan. 10(1), 20-28. https://doi.org/10.29303/jp.v10i1.199

Gašparović, B., Novak, T., Godrijan, J., VranaI, V., Kazazić, S., Penezić, A., Čanković, M., Ljubešić, Z., Hrustić, E., Mlakar, M., Du, J., Zhang, R., & Zhu, Z. (2024). Phytoplankton in Estuaries Adapt to Salinity Stress by Increasing the Content and Unsaturation of the Thylakoid Lipid MGDG. Authorea, 1-15. https://doi.org/10.22541/au.171417959.91857215/v1

Grubisic, M., Santek, B., Kuzmic, M., Čož-Rakovac, R. & Santek, M. I. (2024). Enhancement of Biomass Production of Diatom Nitzschia sp. S5 Through Optimisation of Growth Medium Composition and Fed-Batch Cultivation. Mar. Drugs, 22(46), 1-22. https://doi.org/10.3390/md22010046

Hendro, J., & Zahra, H. S. (2024). Biodiesel Production from Crude Palm Oil (CPO) Through Variation Steps of Esterification-Transesterification and Its Evaluations. AIP Conf. Proc., 3071, 020011. https://doi.org/10.1063/5.0206695

Ilhami, B. T. K., Japa, L., Astuti, S. P., & Kurnianingsih, R. (2015). Pengaruh Perbedaan Umur Panen Terhadap Kandungan Lemak Nitzschia. J. Biologi Tropis, 15(2), 145-155. https://doi.org/10.29303/jbt.v15i2.203

Japa, L., Karnan, K., & Handayani, B. S. (2022). Quality Status of Coastal Waters of Special Economic Zone of Mandalika Central Lombok Based on the Community of Microalgae as Bioindicator. Jurnal Penelitian Pendidikan IPA, 8(6), 2864-2871. https://doi.org/10.29303/jppipa.v8i6.2740

Japa, L., Hananto, D. A., & Suripto, S. (2024). Atlas Fitoplankton Perairan Laut Nusa Tenggara Barat. Malang: Madza Media.

Kumar, N. V., & Choudhary, A. K. (2023). A Review on Hydrogen and Microalgae Biodiesel Fuel in IC Engine. AIP Conf. Proc., 2863, 020032. https://doi.org/10.1063/5.0155398

Kwangdinata, R., Raya, I., & Zakir, M. (2013). Produksi Biodiesel dari Lipid Fitoplankton Nannochloropsis sp. Melalui Metode Ultrasonik. Mar. Chim. Acta., 4(2), 28-36. Retrived from file:///C:/Users/LAB%20ilmu%20lingkungaN/Downloads/jurnal_admin,+14-2-04+OKTOBER+2013.pdf

Manoharan, L., Lam, M. K., Suparmaniam, U., Mahesh. M., Ho, Y. C., Lim, J. W., Tan, I. S., Chin, B. L. F., Lau, S. Y., & Kiew, P. L. (2024). Preliminary Study on Using Seaweed Biomass to Harvest Microalgae for Lipid Production. AIP Conf. Proc., 3041, 030001. https://doi.org/10.1063/5.0194762

Marnelisa, E., Azhari, A., Meriatna, M., Ginting, Z., & Suryati, S. (2022). Manufacturing Biodiesel from Dunaliella salina by Microalgae Oil Transesterification Process Using a Base Catalyst. Jurnal Teknologi Kimia Unimal, 11(2), 217–229. Retrieved from https://ojs.unimal.ac.id/index.php/jtk/article/view/9459/4210

Mirzayanti, Y. W., Syafutra, R. E., Vinataningsih, Y., & Irawan, C. (2021). Konversi Mikroalga Nannochloropsis s.p Menjadi Biodiesel Melalui Proses Transesterifikasi Secara In Situ. Buletin Profesi Insinyur, 4(2), 080–084. http://dx.doi.org/10.20527/bpi.v4i2.113

Nada, S., Juwono, H. & Ritvirulh, C. (2024). Valorisation of Glycerol by-Product of Biodiesel Production from Crude Palm Oil (CPO) by Catalytic Conversion. AIP Conf. Proc., 3071, 020009. https://doi.org/10.1063/5.0206693

Pôjo, V., Tavares, T., & Malcata, F. X. (2021). Processing Methodologies of Wet Microalga Biomass Toward Oil Separation: An Overview. Molecules, 26(641), 1-23. https://doi.org/10.3390/molecules26030641

Pradana, Y. S., Kusumastuti, Y., Putri, N. R. V., Widiyannita, A. M., Prabasiwi, D. S., Fadhila, A. N. F., & Suyono, E. A. (2024). Enhancing the Microalgae Nannochloropsis sp. Harvesting by Chitosan-Based Flocculation-Sedimentation for Biofuel Production. AIP Conf. Proc., 2836, 070004. https://doi.org/10.1063/5.0188425

Prasetyo, L. D., Supriyantini, E., & Sedjati, S. S. (2022). Pertumbuhan Mikroalga Chaetoceros calcitrans pada Kultivasi dengan Intensitas Cahaya Berbeda. Buletin Oseanografi Marina, 11(1), 59–70. http://doi.org/10.14710/buloma.v11i1.31698

Rakhmonov, I., Shayumova, Z., Reymov, K. & Nemato, L. (2024). Energy Efficiency Indicators. AIP Conf. Proc., 3152, 020002. https://doi.org/10.1063/5.0218763

Rezania, S., Oryani, B., Park, J., Hashemi, B., Yadav, K. K., Kwon, E. E., Hur, J., & Cho, J. (2019). Review on Transesterification of Non-Edible Sources for Biodiesel Production with a Focus on Economic Aspects, Fuel Properties and by-Product Applications. Energy Conversion and Management, 201, 112155. https://doi.org/10.1016/j.enconman.2019.112155

Russell, C., Rodriguez, C., & Yaseen, M. (2022). Microalgae for Lipid Production: Cultivation, Extraction & Detection. Algal Research, 66, 10276. https://doi.org/10.1016/j.algal.2022.102765

Sachlan, H. S. (1982). Planktonologi. Semarang: Fakultas Perikanan dan Peternakan, Universitas Diponegoro.

Santigosa, E. F., & Milanese, L. (2021). Microalgae Oil as an Effective Alternative Source of EPA and DHA for Gilthead Seabream (Sparus aurata) Aquaculture. Animals, 11(971), 1-17. https://doi.org/10.3390/ani11040971

Sardi, B., Ningrum, R. F., Ardiansyah, V. A., Qadariyah, L., & Mahfud, M. (2020). Production of Liquid Biofuels from Microalgae Chlorella sp. Via Catalytic Slow Pyrolysis. International Journal of Technology, 13(1), 147-156. https://doi.org/10.14716/ijtech.v13i1.4358

Sekar, P., Muthuswamy, P., Magalingam, S. K., Radhakrishnan, A., & Sajeev, D. (2024). Optimization of Evaluation-Algae Biodiesel Production Process Parameters Using RSM Approach. AIP Conf. Proc., 3042, 020002. https://doi.org/10.1063/5.0194150

Septianto, A. D., Aji, S., & Mirzayanti, Y. W. (2020). Produksi Biodiesel dari Mikroalga Nannochloropsis sp. Menggunakan Metode Transesterifikasi dengan Bantuan Katalis Heterogen CaO/Hydrotalcite. Prosiding Seminar Nasional Sains dan Teknologi Terapan, 493-498. Retrieved from https://ejournal.itats.ac.id/sntekpan/article/view/1278/1040

Sheehan, N. P., Andrew, N., Murray, K., Martinez, E., Quell, K., Ouellette, C., Flagg, T., & Boyle, J. (2020). Bioenergy from Biofuel Residues and Waste. Water Environment Research, 92, 1433-1439. https://doi.org/10.1002/wer.1381

Sopian, T., Junaidi, M., & Azhar, B. (2019). Laju Pertumbuhan Chaetoceros sp. pada Pemeliharaan dengan Pengaruh Warna Cahaya Lampu yang Berbeda. Jurnal Kelautan, 12(1), 36-44. https://doi.org/10.21107/jk.v12i1.4873

Suparmaniam, U., Lam, M. K., Uemura, Y., Lim, J. W., Lee, K. T., & Shuit, S. H. (2019). Insights Into the Microalgae Cultivation Technology and Harvesting Process for Biofuel Production: A Review. Renewable and Sustainable Energy Reviews, 115, 109361. https://doi.org/10.1016/j.rser.2019.109361

Suripto, S., & Japa, L. (2018). Consortium of Wallacean Microalgae in West Nusa Tenggara for Biodiesel Production. Jurnal Biologi Tropis, 18(2), 224-229. https://doi.org/10.29303/jbt.v18i2.881

Suripto, S., & Japa, L. (2021). Improvement of Microalga Biodiesel Production Capacity. Jurnal Biologi Tropis, 20(3), 532-538. https://doi.org/10.29303/jbt.v20i3.2365

Suripto, S., Japa, L., & Jupri, A. (2023). Preliminary Development of Lombok Marine Microalgae for Biodiesel Production. AIP Conf. Proc., 2956, 020005-1-020005-9. https://doi.org/10.1063/5.0175006

Uzwatania, F. (2017). Process Technology of Microalgae Bio Oil as Alternative Energy Source. Jurnal Agroindustri Halal, 3(1), 074–079. Retrived from file:///C:/Users/LAB%20ilmu%20lingkungaN/Downloads/delfitriani,+074-079+Fina+U+AIH.pdf

Valdovinos-García, E. M., Bravo-Sánchez, M. G., Olán-Acosta, M. D. L. A., Barajas-Fernández, J., Guzmán-López, A., & Petriz-Prieto, M. A. (2022). Technoeconomic Evaluation of Microalgae Oil Production: Effect of Cell Disruption Method. Fermentation, 8(301), 1-19. https://doi.org/10.3390/fermentation8070301

Wahyuni, N., Sidik, A. S., & Nikhlani, A. (2020). Pengaruh Perbedaan Salinitas Terhadap Pertumbuhan Skeletonema costatum. J. Aquawarman (Jurnal Sains dan Akuakultur), 6(1), 36-47. Retrived from https://repository.unmul.ac.id/bitstream/handle/123456789/40906/5.%2036-47.%20Nita%20W,%20A.S.%20Sidik,%20A.%20Nikhlani.2020.%20PENGARUH%20PERBEDAAN%20SALINITAS%20TERHADAP%20PERTUMBUHAN%20Skeletonema%20costatum.pdf?sequence=1

Wang, X., Meng, X., Dong, Y., Song, C., Sui, F., Lu, X., Mei, X., Fan, Y., & Liu, Y. (2024). Differential Protein Analysis of Saline-Alkali Promoting the Oil Accumulation in Nitzschia palea. Biotechnology for Biofuels and Bioproducts, 17(11), 2-17. https://doi.org/10.1186/s13068-023-02451-8

Xue, Z., Yu, Y., Yu, W., Gao, X., Zhang, Y., & Kou, X. (2020). Development Prospect and Preparation Technology of Edible Oil from Microalgae. Front. Mar. Sci., 7, 1-15. https://doi.org/10.3389/fmars.2020.00402

Zhang, S., Zhang, L., Xu, G., Li, F., & Li, X. (2022). A Review on Biodiesel Production from Microalgae: Influencing Parameters and Recent Advanced Technologies. Front. Microbiol., 13, 1-10. https://doi.org/10.3389/fmicb.2022.970028

Author Biographies

Suripto, University of Mataram

Lalu Japa, University of Mataram

License

Copyright (c) 2024 Suripto, Lalu Japa

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).