Vol. 10 No. 12 (2024): December
Open Access
Peer Reviewed

Low Temperature Preservation on Dense Biomass of Nannochloropsis oculata

Authors

DOI:

10.29303/jppipa.v10i12.9633

Published:

2024-12-31

Downloads

Abstract

The consistency supply of microalgae is crucial for hatchery as it plays important role as feed for larvae in the early stages. Thus, ensuring the availability of microalgae needs efficient management of feed, including the technique of biomass preservation. The purpose of this research was to observe the application of various low temperature to preserve Nannochloropsis oculata as feed. The source of N.oculata was filtered through a double set of 0.45 micron of cartridge which then preserved based on treatments A (5°C); B (-20° C); and C (15°C) for 30 days. After 30 days of preservation, each treatment as inoculum were cultured in the volume of 2 liter. Initial density of N.oculata was 23-24x106 cells.ml-1 placed into medium consisted of sterile sea water salinity 30 ppm, KW21™ fertilizer dose 1 ml.l-1. Culture environment was set with illumination 3.000-4.000 lux, homogenized with constant aeration, with 15 days of culture period. The result showed that on the days 9, cell density on treatment A, B and C were significantly different each other (sig 0.001), where treatment A had the highest cell density at 57.42±6.95x106 cell.ml-1, then followed with treatment C with 38.33±2.08x106 cell.ml-1 and B with 20.33±5.35x106 cell.ml-1. The use of low temperature as preservation for N.oculata could help low-middle hatchery with remoted area to maintain the sustainability of N.oculata stocks.

Keywords:

Low temperature Nannochloropsis oculata Preservation

References

Aléman-Nava, G. S., Muylaert, K., Cuellar Bermudez, S. P., Depraetere, O., Rittmann, B., Parra-Saldívar, R., & Vandamme, D. (2017). Two-stage cultivation of Nannochloropsis oculata for lipid production using reversible alkaline flocculation. Bioresource Technology, 226, 18–23. https://doi.org/10.1016/J.BIORTECH.2016.11.121

Ansari, F. A., Guldhe, A., Gupta, S. K., Rawat, I., & Bux, F. (2021). Improving the feasibility of aquaculture feed by using microalgae. Environmental Science and Pollution Research 2021 28:32, 28(32), 43234–43257. https://doi.org/10.1007/S11356-021-14989-X

Arguelles, E. D., Gana, N. H. T., & Monsalud, R. G. (2020). Maintenance and Preservation of Microalgal Cultures. In M. R. Martinez-Goss, W. L. Rivera, & N. K. Torreta (Eds.), Methods in Microalgal Studies (pp. 53–61). Philippine Science Letters and University of the Philippines Los Baños.

Borges, L., Caldas, S., Montes D’Oca, M. G., & Abreu, P. C. (2016). Effect of harvesting processes on the lipid yield and fatty acid profile of the marine microalga Nannochloropsis oculata. Aquaculture Reports, 4, 164–168. https://doi.org/10.1016/J.AQREP.2016.10.004

Brown, M. R., & Blackburn, S. I. (2013). Live microalgae as feeds in aquaculture hatcheries. In Advances in Aquaculture Hatchery Technology (pp. 117–156). Elsevier Ltd. https://doi.org/10.1533/9780857097460.1.117

Camacho-Rodríguez, J., Cerón-García, M. C., Macías-Sánchez, M. D., Fernández-Sevilla, J. M., López-Rosales, L., & Molina-Grima, E. (2016). Long-term preservation of concentrated Nannochloropsis gaditana cultures for use in aquaculture. Journal of Applied Phycology, 28(1), 299–312. https://doi.org/10.1007/s10811-015-0572-y

Castelló, M. L., Pariente, G., Andrés, A., & Ortolá, M. D. (2018). Evaluation of strategies for preservation of microalgae Chlorella. Journal of Food Processing and Preservation, 42(2). https://doi.org/10.1111/jfpp.13518

Conceição, L. E. C., Yúfera, M., Makridis, P., Morais, S., & Dinis, M. T. (2010). Live feeds for early stages of fish rearing. Aquaculture Research, 41(5), 613–640. https://doi.org/10.1111/J.1365-2109.2009.02242.X

Creswell, L. (2010). SRAC-Publication-No.-5004-Phytoplankton-Culture-for-Aquaculture-Feed. In SRAC Publication (Pub. No. 5004, Issue No. 5004). https://agrilife.org/fisheries/files/2013/09/SRAC-Publication-No.-5004-Phytoplankton-Culture-for-Aquaculture-Feed.pdf

de Moraes, L. B. S., Santos, R. F. B., Gonçalves Junior, G. F., Mota, G. C. P., Dantas, D. M. de M., de Souza Bezerra, R., & Olivera Gálvez, A. (2022). Microalgae for feeding of penaeid shrimp larvae: an overview. Aquaculture International, 30(3), 1295–1313. https://doi.org/10.1007/S10499-022-00857-Z/TABLES/5

Dinesh, R., Nandhakumar, S., Anand, C., Kumar, J. S. S., & Padmavathy, P. (2024). Comparative analysis of Nannochloropsis oculata, Dunaliella salina, and Tetraselmis gracilis as feed sources for rotifer, Brachionus plicatilis: Effects on population dynamics, biochemical composition, and fatty acid profile. Journal of Applied Phycology, 1–11. https://doi.org/10.1007/S10811-024-03415-7/TABLES/2

Ding, Y., Chen, N., Ke, J., Qi, Z., Chen, W., Sun, S., Zheng, Z., Xu, J., & Yang, W. (2021). Response of the rearing water bacterial community to the beneficial microalga Nannochloropsis oculata cocultured with Pacific white shrimp (Litopenaeus vannamei). Aquaculture, 542, 736895. https://doi.org/10.1016/J.AQUACULTURE.2021.736895

Droppo, I. G. (2000). Filtration in Particle Size Analysis. In Encyclopedia of Analytical Chemistry. Wiley. https://doi.org/10.1002/9780470027318.a1506

Foo, S. C., Mok, C. Y., Ho, S. Y., & Khong, N. M. H. (2023). Microalgal culture preservation: Progress, trends and future developments. Algal Research, 71, 103007. https://doi.org/10.1016/J.ALGAL.2023.103007

Gwo, J. C., Chiu, J. Y., Chou, C. C., & Cheng, H. Y. (2005). Cryopreservation of a marine microalga, Nannochloropsis oculata (Eustigmatophyceae). Cryobiology, 50(3), 338–343. https://doi.org/10.1016/J.CRYOBIOL.2005.02.001

Heasman, M., Diemar, J., Sushames, T., & Foulkes, L. (2000). Development of extended shelf-life microalgae concentrate diets harvested by centrifugation for bivalve molluscs - a summary. Aquaculture Research, 31, 637–659.

LeGresley, M., & Georgina McDermott. (2010). Counting chamber methods for quantitative phytoplankton analysis-haemocytometer, Palmer-Maloney cell and Sedgewick-Rafter cell. In B. Karlson, C. Cusack, & E. Bresnan (Eds.), Microscopic and Molecular Methods for Quantitative Phytoplankton Analysis (p. 25). Intergovernmental Oceanographic Commision. UNESCO (IOC Guides and Manuals, no.55).

Nakanishi, K., Deuchi, K., & Kuwano, K. (2012). Cryopreservation of four valuable strains of microalgae, including viability and characteristics during 15 years of cryostorage. Journal of Applied Phycology, 24(6), 1381–1385. https://doi.org/10.1007/s10811-012-9790-8

Salem, M. A. E. K., Adawy, R. S., Zaki, V. H., & Zahran, E. (2022). Nannochloropsis oculata supplementation improves growth, immune response, intestinal integrity, and disease resistance of Nile Tilapia. Journal of Aquatic Animal Health, 34(4), 184–196. https://doi.org/10.1002/AAH.10170

Sales, R., Derner, R. B., & Tsuzuki, M. Y. (2019). Effects of different harvesting and processing methods on Nannochloropsis oculata concentrates and their application on rotifer Brachionus sp. cultures. Journal of Applied Phycology, 31(6), 3607–3615. https://doi.org/10.1007/S10811-019-01877-8/TABLES/2

Author Biographies

Indrian Rizka Amalia, National Research and Innovation Agency

Author Origin : Indonesia

Abidin Nur, National Research and Innovation Agency

Author Origin : Indonesia

Downloads

Download data is not yet available.

How to Cite

Amalia, I. R., & Nur, A. (2024). Low Temperature Preservation on Dense Biomass of Nannochloropsis oculata. Jurnal Penelitian Pendidikan IPA, 10(12), 11336–11340. https://doi.org/10.29303/jppipa.v10i12.9633