Characteristics of Chitosan from Black Soldier Fly Pupa Shells as a Crosslinking Agent in the Manufacture of Slow-Release Fertilizer Hydrogels

Authors

Sri Wahyuna Saragih , Wardatul Husna Irham , Ingrid Ovie Yosephine , Muhammad Ferza , Bella Yulia , Annisah Fadhilah

DOI:

10.29303/jppipa.v11i1.9692

Published:

2025-01-29

Issue:

Vol. 11 No. 1 (2025): In Progress

Keywords:

Black soldier fly, Chitosan, Crosslink agent, Hydrogel, Slow-release fertilizer

Research Articles

Downloads

How to Cite

Saragih, S. W., Irham, W. H., Yosephine, I. O., Ferza, M., Yulia, B., & Fadhilah, A. (2025). Characteristics of Chitosan from Black Soldier Fly Pupa Shells as a Crosslinking Agent in the Manufacture of Slow-Release Fertilizer Hydrogels. Jurnal Penelitian Pendidikan IPA, 11(1), 558–566. https://doi.org/10.29303/jppipa.v11i1.9692

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

Chitosan, a natural polysaccharide obtained through the deacetylation of chitin, exhibits unique properties that make it a potential material for various applications, including agriculture. This study aims to examine the characteristics of chitosan derived from Black Soldier Fly (BSF) pupa shells and its role as a crosslinking agent in polymer-based hydrogel synthesis for slow-release fertilizers. Chitosan was isolated through chemical processes, including demineralization, deproteinization, and deacetylation. Characterization was conducted using FTIR, XRD, SEM, TEM, and TGA. The results revealed that chitosan from BSF pupa shells has a degree of deacetylation of 83%, a semi-crystalline and slightly amorphous structure, pores that enhance water absorption capacity, and high thermal stability. These properties make chitosan an effective crosslinking agent, improving hydrogel stability and extending nutrient release duration. These findings demonstrate the potential of chitosan as an innovative material for hydrogel applications in sustainable agriculture.

References

Azmi, N., Lock, S. S. M., Berghuis, N. T., Sarwono, A., Zahra, N. L., Rahman, A., Waqas, S., & Farooqi, A. S. (2024). Influence of synthesis approach and formulation on the physicochemical properties of chitin and chitosan from Black Soldier Fly. Results in Engineering, 23(April). https://doi.org/10.1016/j.rineng.2024.102401

Budikania, T. S., Herawati, & Nasution, A. F. (2021). Karakteristik Fitokimia Dan Aktivitas Antioksidan Ekstrak Pupa Black Soldier Fly (BSF) Tri Sutanti Budikania, Herawati dan Amalia Fitrian Nasution. Warta Akab, 45(2), 90–97. https://doi.org/10.55075/wa.v45i2.57

Deng, W., Tang, Y., Mao, J., Zhou, Y., Chen, T., & Zhu, X. (2021). Cellulose nanofibril as a crosslinker to reinforce the sodium alginate/chitosan hydrogels. International Journal of Biological Macromolecules, 189(August), 890–899. https://doi.org/10.1016/j.ijbiomac.2021.08.172

Gun’ko, V. M., Savina, I. N., & Mikhalovsky, S. V. (2017). Properties of water bound in hydrogels. Gels, 3(4). https://doi.org/10.3390/gels3040037

Hahn, T., Roth, A., Ji, R., Schmitt, E., & Zibek, S. (2020). Chitosan production with larval exoskeletons derived from the insect protein production. Journal of Biotechnology, 310(September), 62–67. https://doi.org/10.1016/j.jbiotec.2019.12.015

Hakim S, A., Rianna, M., & Elnovreny, J. (2023). Synthesis and Characterization of PVA-Enzyme/GA/PANI-HCl Indicator Membrane Electrodes; PANI-p-toluentsulfonic acid/PVC-KTpClPB-o-NPOE, SEM-EDX, XRD and FTIR Analysis. Jurnal Penelitian Pendidikan IPA, 9(10), 8665–8671. https://doi.org/10.29303/jppipa.v9i10.4918

Hamsina, Doan, F., Hermawati, Safira, I., & Hasani, R. (2024). Modification of Cassava Peel Starch, Substituting Chitosan and Seaweed: Production of High Quality Edible Film. Jurnal Penelitian Pendidikan IPA, 10(2), 654–661. https://doi.org/10.29303/jppipa.v10i2.6428

Handayani, L., Syahputra, F., & Astuti, Y. (2018). Utilization and Characterization of Oyster Shell as Chitosan and Nanochitosan. Jurnal Kimia Sains Dan Aplikasi, 21(4), 224–231. https://doi.org/10.14710/jksa.21.4.224-231

Hapsari, N. A. P., & Suparno, S. (2023). Effect of Concentration Variation of Liquid Organic Fertilizer Application on the Growth of Mustard Plants. Jurnal Penelitian Pendidikan IPA, 9(7), 4894–4900. https://doi.org/10.29303/jppipa.v9i7.2837

Hisham, F., Maziati Akmal, M. H., Ahmad, F., Ahmad, K., & Samat, N. (2024). Biopolymer chitosan: Potential sources, extraction methods, and emerging applications. Ain Shams Engineering Journal, 15(2), 102424. https://doi.org/10.1016/j.asej.2023.102424

Ihsan, M. B., & Ratnawulan. (2023). Effect of Carboxymethyl Cellulose (CMC) Addition on the Quality of Biodegradable Plastic from Corn Cob. Jurnal Penelitian Pendidikan IPA, 9(7), 5117–5125. https://doi.org/10.29303/jppipa.v9i7.4010

Jelita, J., Saragih, S. W., & Irham, W. H. (2024). BC-g-PAA: Characterization and Establishment of the IPN Hydrogel. Jurnal Penelitian Pendidikan IPA, 10(5), 2537–2544. https://doi.org/10.29303/jppipa.v10i5.7007

Lestari, S., Yuningsih, L. M., & Muharam, S. (2022). Hidrogel Superabsorben Berbasis Natrium Alginat-Bentonit sebagai Pelapis Pupuk Lepas Lambat. Jurnal Riset Kimia, 13(1), 58–67. https://doi.org/10.25077/jrk.v13i1.464

Lin, Y. S., Liang, S. H., Lai, W. L., Lee, J. X., Wang, Y. P., Liu, Y. T., Wang, S. H., & Lee, M. H. (2021). Sustainable extraction of chitin from spent pupal shell of black soldier fly. Processes, 9(6), 1–8. https://doi.org/10.3390/pr9060976

Liu, W. C., Wang, H. Y., Lee, T. H., & Chung, R. J. (2019). Gamma-poly glutamate/gelatin composite hydrogels crosslinked by proanthocyanidins for wound healing. Materials Science and Engineering C, 101(1), 630–639. https://doi.org/10.1016/j.msec.2019.04.018

Lubis, R., Saragih, S. W., Irham, W. H., Ajmain, A., & Saisa, S. (2023). Thermal and physical properties of CNF/glutaraldehyde-gelatin-based hydrogel. Jurnal Natural, 23(1), 35–40. https://doi.org/10.24815/jn.v23i1.29935

Mahendra, I. P., Wirjosentono, B., Tamrin, Ismail, H., & Mendez, J. A. (2019). Thermal and morphology properties of cellulose nanofiber from TEMPO-oxidized lower part of empty fruit bunches (LEFB). Open Chemistry, 17(1), 526–536. https://doi.org/10.1515/chem-2019-0063

Miratsi, L., Humaeroh, Z., & Afriani, F. (2021). Kemampuan Swelling Hidrogel Berbasis Pva/Alginat. In Proceedings of National Colloquium Research and Community Service (Vol. 5, pp. 149-151). https://doi.org/10.33019/snppm.v5i0.2727

Mirwandhono, E., Yunilas, Ginting, N., Siregar, G. A. W., Nasution, M. I. A., Wahyuni, S., & Siswanto. (2024). Isolation and characterization of chitosan from black soldier fly exuviae. IOP Conference Series: Earth and Environmental Science, 1362(1). https://doi.org/10.1088/1755-1315/1362/1/012013

Mohan, K., Ganesan, A. R., Muralisankar, T., Jayakumar, R., Sathishkumar, P., Uthayakumar, V., Chandirasekar, R., & Revathi, N. (2020). Recent insights into the extraction, characterization, and bioactivities of chitin and chitosan from insects. Trends in Food Science and Technology, 105(May), 17–42. https://doi.org/10.1016/j.tifs.2020.08.016

Natalia, D. A., Dharmayanti, N., & Dewi, F. R. (2021). The Production of Chitosan from Crab Shell (Portunus sp.) at Room Temperature. Jurnal Pengolahan Hasil Perikanan Indonesia, 24(3), 301–309. https://doi.org/10.17844/jphpi.v24i3.36635

Nguyen, N. T. P., Nguyen, L. V. H., Thanh, N. T., Toi, V. Van, Ngoc Quyen, T., Tran, P. A., David Wang, H. M., & Nguyen, T. H. (2019). Stabilization of silver nanoparticles in chitosan and gelatin hydrogel and its applications. Materials Letters, 248, 241–245. https://doi.org/10.1016/j.matlet.2019.03.103

Niu, J., Wang, J., Dai, X., Shao, Z., & Huang, X. (2018). Dual physically crosslinked healable polyacrylamide/cellulose nanofibers nanocomposite hydrogels with excellent mechanical properties. Carbohydrate Polymers, 193(November 2017), 73–81. https://doi.org/10.1016/j.carbpol.2018.03.086

Oktavia, S., Rohmah, S., & Novi, C. (2024). Application of Chitosan from Litopenaeus vannamei and Baglog Waste from Pleurotus ostreatus for Decolorizing Batik Wastewater. Jurnal Penelitian Pendidikan IPA, 10(2), 638–647. https://doi.org/10.29303/jppipa.v10i2.5859

Rachmawaty, R., Sahribulan, S., Putri, S. E., & Arisma, W. F. (2023). Formation of chitosan from black soldier fly (hermetia illucens) pupae using microwaves radiation energy. Jurnal Aisyah: Jurnal Ilmu Kesehatan, 8(2), 1173–1180. https://doi.org/10.30604/jika.v8i3.2142

Ramli, R. A. (2019). Slow release fertilizer hydrogels: A review. Polymer Chemistry, 10(45), 6073–6090. https://doi.org/10.1039/c9py01036j

Saragih, S. W., Hardiyanti, R., & Mahendra, I. P. (2021). Antimicrobial activity of cellulose nanofiberbased hydrogels from abacÁ banana pseudo-stem fibre. Rasayan Journal of Chemistry, 14(1), 578–583. https://doi.org/10.31788/RJC.2021.1415883

Saragih, S. W., Wirjosentono, B., Eddiyanto, & Meliana, Y. (2020). Influence of crosslinking agent on the morphology, chemical, crystallinity and thermal properties of cellulose nanofiber using steam explosion. Case Studies in Thermal Engineering, 22, 100740. https://doi.org/10.1016/j.csite.2020.100740

Siddiqui, S. A., Ristow, B., Rahayu, T., Putra, N. S., Widya Yuwono, N., Nisa’, K., Mategeko, B., Smetana, S., Saki, M., Nawaz, A., & Nagdalian, A. (2022). Black soldier fly larvae (BSFL) and their affinity for organic waste processing. Waste Management, 140(December), 1–13. https://doi.org/10.1016/j.wasman.2021.12.044

Soetemans, L., Uyttebroek, M., & Bastiaens, L. (2020). Characteristics of chitin extracted from black soldier fly in different life stages. International Journal of Biological Macromolecules, 165, 3206–3214. https://doi.org/10.1016/j.ijbiomac.2020.11.041

Subhan, M., Rosyidi, B., Ali, M., Wariata, W., Kisworo, D., Salma, Q. A., & Mursyid, M. H. (2024). Isolation and Identification of Swan (Cygnus olor) Digestive Tract Cellulothic Bacteria to Support Fiber Degradation. Jurnal Penelitian Pendidikan IPA, 10(SpecialIssue), 572-578. https://doi.org/10.29303/jppipa.v10iSpecialIssue.8516

Sulistyawati, L., Foliatini, F., Nurdiani, N., & Puspita, F. (2022). Isolasi dan Karakterisasi Kitin dan Kitosan dari Pupa Black Soldier Fly (BSF). Warta Akab, 46(1), 56–62. https://doi.org/10.55075/wa.v46i1.89

Susanto, C., Wijaya, C. D., & Turnip, G. L. U. P. (2024). Acemannan Hydrogel’s Effects on Neutrophils at Concentrations of 25%, 50%, 75% Counts in Wistar Rats with Periodontitis Induced by Alloxan. Jurnal Penelitian Pendidikan IPA, 10(4), 1564–1570. https://doi.org/10.29303/jppipa.v10i4.7054

Thombare, N., Mishra, S., Shinde, R., Siddiqui, M. Z., & Jha, U. (2021). Guar gum based hydrogel as controlled micronutrient delivery system: Mechanism and kinetics of boron release for agricultural applications. Biopolymers, 112(3), 1–10. https://doi.org/10.1002/bip.23418

Triunfo, M., Tafi, E., Guarnieri, A., Salvia, R., Scieuzo, C., Hahn, T., Zibek, S., Gagliardini, A., Panariello, L., Coltelli, M. B., De Bonis, A., & Falabella, P. (2022). Characterization of chitin and chitosan derived from Hermetia illucens, a further step in a circular economy process. Scientific Reports, 12(1), 1–17. https://doi.org/10.1038/s41598-022-10423-5

Ulfa, M., Noviani, I., Yuanita, E., Dharmayani, N. K. T., Sudirman, & Sarkono. (2023). Synthesis and Characterization of Composites-Based Bacterial Cellulose by Ex-Situ Method as Separator Battery. Jurnal Penelitian Pendidikan IPA, 9(6), 4647–4651. https://doi.org/10.29303/jppipa.v9i6.3819

Wang, W., Xue, C., & Mao, X. (2020). Chitosan: Structural modification, biological activity and application. International Journal of Biological Macromolecules, 164, 4532–4546. https://doi.org/10.1016/j.ijbiomac.2020.09.042

Yadav, M., Goswami, P., Paritosh, K., Kumar, M., Pareek, N., & Vivekanand, V. (2019). Seafood waste: a source for preparation of commercially employable chitin/chitosan materials. Bioresources and Bioprocessing, 6(1). https://doi.org/10.1186/s40643-019-0243-y

Zinge, C., & Kandasubramanian, B. (2020). Nanocellulose based biodegradable polymers. European Polymer Journal, 133(April), 109758. https://doi.org/10.1016/j.eurpolymj.2020.109758

Złotko, K., Waśko, A., Kamiński, D. M., Budziak-Wieczorek, I., Bulak, P., & Bieganowski, A. (2021). Isolation of chitin from black soldier fly (Hermetia illucens) and its usage to metal sorption. Polymers, 13(5), 1–16. https://doi.org/10.3390/polym13050818

Author Biographies

Sri Wahyuna Saragih, Institut Teknologi Sawit Indonesia

Wardatul Husna Irham, Institut Teknologi Sawit Indonesia

Ingrid Ovie Yosephine, Institut Teknologi Sawit Indonesia

Muhammad Ferza, Institut Teknologi Sawit Indonesia

Bella Yulia, Institut Teknologi Sawit Indonesia

Annisah Fadhilah, Institut Teknologi Sawit Indonesia

License

Copyright (c) 2025 Sri Wahyuna Saragih, Wardatul Husna Irham, Ingrid Ovie Yosephine, Muhammad Ferza, Bella Yulia, Annisah Fadhilah

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).