The Effect of Soil Amendments and Shading on the Yield of Red Chili (Capsicum annum L.) in a Sandy Dryland
DOI:
10.29303/jppipa.v10i12.9818Published:
2024-12-25Issue:
Vol. 10 No. 12 (2024): DecemberKeywords:
Biochar, Manure, Microbes, Organic matter, UV plasticResearch Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
Low nutrient along with intense sunlight levels in sandy drylands, often lead to poor crops yield. This study examined the effects of soil amendments and shading on the yield of red chili plants cultivated in a sandy (70% sand, 15% clay and 15% silt) dryland environment. The experiment was conducted in Gumantar Village, North Lombok Regency from May to September 2024. The C-organic content of the soil was 1.11% with only 0.09% of total nitrogen. The soil amendment treatments included no soil amendment, chicken manure, and seaweed biochar. The shading treatments consisted of two levels: no shading and shading using a 200-micron UV plastic with 14% diffusive ultraviolet ray. All treatments were arranged factorially using a randomized block design with three replications. The results indicated that soil amendments and shading did not significantly affect plant growth, certain soil chemical properties, or microbial populations, possibly due to its short time effect. However, both types of soil amendments and UV plastic shading increased the yield of red chili plants by approximately 6.0% compared to the treatment without any amendments or without shading. This study shows that soil amendment and shading with UV plastic improve tomato yield in sandy dryland soils.
References
Ahmad Bhat, S., Kuriqi, A., Dar, M. U. D., Bhat, O., Sammen, S. S., Towfiqul Islam, A. R. M., Elbeltagi, A., Shah, O., Ai-Ansari, N., & Ali, R. (2022). Application of biochar for improving physical, chemical, and hydrological soil properties: a systematic review. Sustainability, 14(17), 11104. https://doi.org/10.3390/su141711104
Ahmed, M., Hayat, R., Ahmad, M., Ul-Hassan, M., Kheir, A. M., Ul-Hassan, F., Ur-Rehman, M. H., Shaheen, F. A., Raza, M. A., & Ahmad, S. (2022). Impact of climate change on dryland agricultural systems: a review of current status, potentials, and further work need. International Journal of Plant Production, 16(3), 341-363. https://doi.org/10.1007/s42106-022-00197-1
Akanmu, A. O., Olowe, O. M., Phiri, A. T., Nirere, D., Odebode, A. J., Karemera Umuhoza, N. J., Asemoloye, M. D., & Babalola, O. O. (2023). Bioresources in organic farming: implications for sustainable agricultural systems. Horticulturae, 9(6), 659. https://doi.org/10.3390/horticulturae9060659
Alizadeh, K., Gathala, M. K., Mohammadi, R., & Amri, A. (2023). Dryland agriculture: crop adaptations, increasing yield and soil fertility. In (Vol. 11, pp. 1293440): Frontiers Media SA.
Bekchanova, M., Campion, L., Bruns, S., Kuppens, T., Lehmann, J., Jozefczak, M., Cuypers, A., & Malina, R. (2024). Biochar improves the nutrient cycle in sandy-textured soils and increases crop yield: a systematic review. Environmental Evidence, 13(1), 3. https://doi.org/10.1186/s13750-024-00326-5
Berhe, D. T., Zergaw, Y., & Kebede, T. (2022). Organic amendments: direct application and residual effects on vegetative and reproductive growth of hot pepper. The Scientific World Journal, 2022(1), 2805004. https://doi.org/10.1155/2022/2805004
Deng, C., Zhong, Q., Shao, D., Ren, Y., Li, Q., Wen, J., & Li, J. (2024). Potential Suitable Habitats of Chili Pepper in China under Climate Change. Plants, 13(7), 1027. https://doi.org/10.3390/plants13071027
Dong, M., Zhou, H., Wang, J., Yang, J., Lai, J., Chen, Y., Sun, F., Ye, X., & Wu, Y. (2024). Responses of soil microbial metabolism, function and soil quality to long-term addition of organic materials with different carbon sources. Biochar, 6(1), 80. https://doi.org/10.3389/fpls.2022.770315
Fallah, M., Hadi, H., Amirnia, R., Hassanzadeh-Ghorttapeh, A., Zuan, A. T. K., & Sayyed, R. (2021). Eco-friendly soil amendments improve growth, antioxidant activities, and root colonization in lingrain (Linum Usitatissimum L.) under drought conditions. Plos one, 16(12), e0261225. https://doi.org/10.1371/journal.pone.0261225
Gao, S., Duan, Y., Wang, D., & Turini, T. (2022). No significant influence of biochar and manure application on nitrogen fate and sequestration by tomato and garlic crops: A field experiment in California, USA. Soil Use and Management, 38(1), 676-690. https://doi.org/10.1111/sum.12749
Garruña-Hernández, R., Canto, A., Mijangos-Cortés, J. O., Islas, I., Pinzón, L., & Orellana, R. (2012). Changes in flowering and fruiting of Habanero pepper in response to higher temperature and CO2. Journal of Food, Agriculture & Environment, 10(3&4), 802-808.
Grace, J., Lloyd, J., Miranda, A. C., Miranda, H., & Gash, J. (1998). Fluxes of carbon dioxide and water vapour over a C4 pasture in southwestern Amazonia (Brazil). Functional Plant Biology, 25(5), 519-530. https://doi.org/10.1071/PP97120
Gryta, A., Frąc, M., & Oszust, K. (2020). Genetic and metabolic diversity of soil microbiome in response to exogenous organic matter amendments. Agronomy, 10(4), 546. https://doi.org/10.3390/agronomy10040546
Hassan, S. M., Ghoneim, I. M., El-Araby, S. M., & Elsharkawy, A. (2014). Effect of different plastic covers on vegetative growth and yield quality of cucumber plants (Cucumis sativus L.). World Appl. Sci. J, 32, 217-225. https://doi.org/10.5829/idosi.wasj.2014.32.02.14524
Huang, R., McGrath, S. P., Hirsch, P. R., Clark, I. M., Storkey, J., Wu, L., Zhou, J., & Liang, Y. (2019). Plant–microbe networks in soil are weakened by century‐long use of inorganic fertilizers. Microbial biotechnology, 12(6), 1464-1475. https://doi.org/10.1111/1751-7915.13487
Husen, M. U., Naher, N., Habib, Z. F. B., Rahaman, H., & Halim, A. (2023). Growth and Yield Performance of Chili (Capsicum annuum L.) on Rooftop of Different Height of Buildings. Journal of Experimental Agriculture International, 45(11), 104-121. https://doi.org/10.9734/jeai/2023/v45i112240
Jaya, I. K. D., Sudika, I. W., Windarningsih, M., & Isnaini, M. (2021). Organic foliar fertilizer to improve yield of cayenne pepper (Capsicum frutescens L.) grown off-season. E3S Web of Conferences, 306, 01016. https://doi.org/10.1051/e3sconf/202130601016
Jeffery, S., Memelink, I., Hodgson, E., Jones, S., van de Voorde, T. F., Martijn Bezemer, T., Mommer, L., & van Groenigen, J. W. (2017). Initial biochar effects on plant productivity derive from N fertilization. Plant and soil, 415, 435-448. https://doi.org/10.1007/s11104-016-3171-z
Katakula, A. A. N., Gawanab, W., Itanna, F., & Mupambwa, H. A. (2020). The potential fertilizer value of Namibian beach-cast seaweed (Laminaria pallida and Gracilariopsis funicularis) biochar as a nutrient source in organic agriculture. Scientific African, 10, e00592. https://doi.org/10.1016/j.sciaf.2020.e00592
Katsoulas, N., Bari, A., & Papaioannou, C. (2020). Plant responses to UV blocking greenhouse covering materials: A review. Agronomy, 10(7), 1021. https://doi.org/10.3390/agronomy10071021
Legarrea, S., Karnieli, A., Fereres, A., & Weintraub, P. G. (2010). Comparison of UV‐absorbing nets in pepper crops: Spectral Properties, effects on plants and pest control. Photochemistry and Photobiology, 86(2), 324-330. https://doi.org/10.1111/j.1751-1097.2009.00657.x
Lehmann, J., & Joseph, S. (2015). Biochar for environmental management: an introduction. In Biochar for environmental management (pp. 1-13). Routledge.
Lei, Y., Xu, L., Wang, M., Sun, S., Yang, Y., & Xu, C. (2024). Effects of Biochar Application on Tomato Yield and Fruit Quality: A Meta-Analysis. Sustainability, 16(15), 6397. https://doi.org/10.3390/su16156397
Libohova, Z., Seybold, C., Wysocki, D., Wills, S., Schoeneberger, P., Williams, C., Lindbo, D., Stott, D., & Owens, P. R. (2018). Reevaluating the effects of soil organic matter and other properties on available water-holding capacity using the National Cooperative Soil Survey Characterization Database. Journal of soil and water conservation, 73(4), 411-421. https://doi.org/10.2489/jswc.73.4.411
Lile, R., Ocnean, M., & Balan, I. M. (2023). Challenges for Zero Hunger (SDG 2): Links with Other SDGs. Zero Hunger, 9. https://doi.org/10.3390/books978-3-03897-863-3-2
Liu, W., Yang, Z., Ye, Q., Peng, Z., Zhu, S., Chen, H., Liu, D., Li, Y., Deng, L., & Shu, X. (2023). Positive Effects of Organic Amendments on Soil Microbes and Their Functionality in Agro-Ecosystems. Plants, 12(22), 3790. https://doi.org/10.3390/plants12223790
Lu, J., Qiu, H., Zhang, Q., Lan, Y., Wang, P., Wu, Y., Mo, J., Chen, W., Niu, H., & Wu, Z. (2022). Inversion of chlorophyll content under the stress of leaf mite for jujube based on model PSO-ELM method. Frontiers in Plant Science, 13, 1009630. https://doi.org/10.3389/fpls.2022.1009630
Lycoskoufis, I., Kavga, A., Koubouris, G., & Karamousantas, D. (2022). Ultraviolet radiation management in greenhouse to improve red lettuce quality and yield. Agriculture, 12(10), 1620. https://doi.org/10.3390/agriculture12101620
Mahmud, R., Faria Naznin, M. A. R., Islam, T., Quyyum, F. B., & Bristy, M. A. H. J. (2023). Performance of some chilli (Capsicum annum L.) varieties in costal soil in Noakhali, Bangladesh. Journal of Agroforestry and Environment, 16(2), 108-113. https://doi.org/10.55706/jae
Masabni, J., Sun, Y., Niu, G., & Del Valle, P. (2016). Shade effect on growth and productivity of tomato and chili pepper. HortTechnology, 26(3), 344-350. https://doi.org/10.21273/HORTTECH.26.3.344
Mishra, S., Spaccarotella, K., Gido, J., Samanta, I., & Chowdhary, G. (2023). Effects of heat stress on plant-nutrient relations: An update on nutrient uptake, transport, and assimilation. International Journal of Molecular Sciences, 24(21), 15670. https://doi.org/10.3390/ijms242115670
Omara, P., Aula, L., Otim, F., Obia, A., Souza, J. L. B., & Arnall, D. B. (2022). Biochar Applied with Inorganic Nitrogen Improves Soil Carbon, Nitrate and Ammonium Content of a Sandy Loam Temperate Soil. Nitrogen, 3(1), 90-100. https://doi.org/10.3390/nitrogen3010007
Papaioannou, C., Katsoulas, N., Maletsika, P., Siomos, A., & Kittas, C. (2012). Effects of a UV-absorbing greenhouse covering film on tomato yield and quality. Spanish Journal of Agricultural Research, 10(4), 959-966. https://doi.org/10.5424/sjar/2012104-2899
Paskhin, M. O., Yanykin, D. V., & Gudkov, S. V. (2022). Current approaches to light conversion for controlled environment agricultural applications: A review. Horticulturae, 8(10), 885. https://doi.org/10.3390/horticulturae8100885
Plaza-Bonilla, D., Arrúe, J. L., Cantero-Martínez, C., Fanlo, R., Iglesias, A., & Álvaro-Fuentes, J. (2015). Carbon management in dryland agricultural systems. A review. Agronomy for sustainable development, 35, 1319-1334. https://doi.org/10.1007%2Fs13593-015-0326-x
Roberts, D. A., Paul, N. A., Dworjanyn, S. A., Bird, M. I., & de Nys, R. (2015). Biochar from commercially cultivated seaweed for soil amelioration. Scientific reports, 5(1), 9665. https://doi.org/10.1038/srep09665
Safta, L., Jaya, I. K. D., Santoso, B. B., & Jayaputra, J. (2024). Hasil dan nisbah kesetaraan lahan dua varietas cabai merah (Capsicum annum L.) yang ditumpangsarikan dengan kacang tanah di lahan kering. Jurnal Sains Teknologi & Lingkungan, 10(1), 1-11. https://doi.org/10.29303/jstl.v10i1.587
Sashaan, G. F., Chozin, M. A., Syukur, M., & RitongaI, A. W. (2023). Estimation of genetic parameters and variability of various cayenne peppers under net shading. Biodiversitas Journal of Biological Diversity, 24(11). https://doi.org/10.13057/biodiv/d241109
Setiamihardja, R., & Knavel, D. (1990). Association of pedicel length and diameter with fruit length and diameter and ease of fruit detachment in pepper. Journal of the American Society for Horticultural Science, 115(4), 677-681.
Sharma, V., Semwal, C., & Uniyal, S. (2010). Genetic variability and character association analysis in bell pepper (Capsicum annuum L.). Journal of Horticulture and Forestry, 2(3), 58-65.
Tezcan, N. Y., Taşpınar, H., & Korkmaz, C. (2023). Effects of Shade Nets on the Microclimate and Growth of the Tomato. Journal of Agricultural Sciences, 29(2), 443-454. https://doi.org/10.15832/ankutbd.1073156
Voltr, V., Menšík, L., Hlisnikovský, L., Hruška, M., Pokorný, E., & Pospíšilová, L. (2021). The soil organic matter in connection with soil properties and soil inputs. Agronomy, 11(4), 779. https://doi.org/10.3390/agronomy11040779
Walling, E., & Vaneeckhaute, C. (2020). Greenhouse gas emissions from inorganic and organic fertilizer production and use: A review of emission factors and their variability. Journal of Environmental Management, 276, 111211. https://doi.org/10.1016/j.jenvman.2020.111211
Yue, X., Liu, X., Wang, F., Shen, C., & Zhang, Y. (2023). Contrasting effects of organic materials versus their derived biochars on maize growth, soil properties and bacterial community in two type soils. Frontiers in Microbiology, 14, 1174921. https://doi.org/10.3389/fmicb.2023.1174921
Zhang, M., Liu, Y., Wei, Q., Liu, L., Gu, X., & Gou, J. (2022). Biochar-based fertilizer enhances the production capacity and economic benefit of open-field eggplant in the karst region of southwest China. Agriculture, 12(9), 1388. https://doi.org/10.3390/agriculture12091388
Author Biographies
Lalu Wahyu Ardis Pandya, University of Mataram
I Komang Damar Jaya, University of Mataram
Bambang Budi Santoso, University of Mataram
Jayaputra, University of Mataram
License
Copyright (c) 2024 Lalu Wahyu Ardis Pandya, I Komang Damar Jaya, Bambang Budi Santoso, Jayaputra
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).