Canonical Correlation Analysis and Its Extension for SSVEP-based BCI Detection: A Systematic Review

Authors

Muhamad Agung Suhendra , Iqbal Robiyana , Tedi Sumardi , Ahmad Sofyan Sulaeman , Permono Adi Putro , Nurizati , Usep Tatang Suryadi , Anderias Eko Wijaya , Sunanto Ajidarmo , Arief Budiman , M. Faizal Amri

DOI:

10.29303/jppipa.v10i12.9844

Published:

2024-12-31

Issue:

Vol. 10 No. 12 (2024): December

Keywords:

Brain computer interface, CCA analysis, Electroencephalography, steady-state visual evoked potential, Systematic literature review

Review

Downloads

How to Cite

Suhendra, M. A., Robiyana, I., Sumardi, T., Sulaeman, A. S., Putro, P. A., Nurizati, N., … Amri, M. F. (2024). Canonical Correlation Analysis and Its Extension for SSVEP-based BCI Detection: A Systematic Review. Jurnal Penelitian Pendidikan IPA, 10(12), 1027–1040. https://doi.org/10.29303/jppipa.v10i12.9844

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

SSVEP-based Brain-Computer Interfaces (BCIs) utilize steady-state visual evoked potentials, which are brain responses triggered by visual stimuli flickering at specific frequencies. Users can focus on these stimuli, allowing the system to interpret their intent based on the brain's electrical activity. This technology has applications in communication for individuals with disabilities, gaming, and neuro-feedback, offering an ultimate means of interaction through thought alone. In this study, systematic literature review was conducted to identify analytical methods for SSVEP spellers with PRISMA method from the eligibility criteria. CCA and its extension become gold-standar method that give excellent performances for SSVEP recognition and signal classification. Some uniques features also found such as MsetCCA, FB-CCA, MF-CCA, TW-CCA, CP-CCA, IIS-CCA, TT-CCA and RLS-CCA. Therefore, we have various options for choosing the best method for recognizing SSVEP from EEG signals based BCI.

References

Apicella, A., Arpaia, P., Benedetto, E. De, Donato, N., Duraccio, L., Giugliano, S., & Prevete, R. (2023). Employment of Domain Adaptation Techniques in SSVEP-Based Brain–Computer Interfaces. IEEE Access, 11, 36147–36157. https://doi.org/10.1109/ACCESS.2023.3266306

Arpaia, P., De Benedetto, E., De Paolis, L., D’Errico, G., Donato, N., & Duraccio, L. (2022). Performance enhancement of wearable instrumentation for AR-based SSVEP BCI. Measurement, 196, 111188. https://doi.org/10.1016/j.measurement.2022.111188

Asanza, V., Avilés-Mendoza, K., Trivino-Gonzalez, H., Rosales-Uribe, F., Torres-Brunes, J., Loayza, F. R., Peláez, E., Cajo, R., & Tinoco-Egas, R. (2021). SSVEP-EEG Signal Classification based on Emotiv EPOC BCI and Raspberry Pi. IFAC-PapersOnLine, 54(15), 388–393. https://doi.org/10.1016/j.ifacol.2021.10.287

Bassi, P. R. A. S., Rampazzo, W., & Attux, R. (2021). Transfer learning and SpecAugment applied to SSVEP based BCI classification. Biomedical Signal Processing and Control, 67, 102542. https://doi.org/10.1016/j.bspc.2021.102542

Chailloux Peguero, J. D., Hernández-Rojas, L. G., Mendoza-Montoya, O., Caraza, R., & Antelis, J. M. (2023). SSVEP detection assessment by combining visual stimuli paradigms and no-training detection methods. Frontiers in Neuroscience, 17. https://doi.org/10.3389/fnins.2023.1142892

Chen, W., Chen, S.-K., Liu, Y.-H., Chen, Y.-J., & Chen, C.-S. (2022). An Electric Wheelchair Manipulating System Using SSVEP-Based BCI System. Biosensors, 12(10), 772. https://doi.org/10.3390/bios12100772

Chen, X., Huang, X., Wang, Y., & Gao, X. (2020). Combination of Augmented Reality Based Brain- Computer Interface and Computer Vision for High-Level Control of a Robotic Arm. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(12), 3140–3147. https://doi.org/10.1109/TNSRE.2020.3038209

Chen, X., Liu, B., Wang, Y., & Gao, X. (2022). A Spectrally-Dense Encoding Method for Designing a High-Speed SSVEP-BCI With 120 Stimuli. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 30, 2764–2772. https://doi.org/10.1109/TNSRE.2022.3208717

Chen, X., Zhao, B., Wang, Y., & Gao, X. (2019). Combination of high-frequency SSVEP-based BCI and computer vision for controlling a robotic arm. Journal of Neural Engineering, 16(2), 026012. https://doi.org/10.1088/1741-2552/aaf594

de Paula, P. O., da Silva Costa, T. B., de Faissol Attux, R. R., & Fantinato, D. G. (2023). Classification of image encoded SSVEP-based EEG signals using Convolutional Neural Networks. Expert Systems with Applications, 214, 119096. https://doi.org/10.1016/j.eswa.2022.119096

Dehzangi, O., Farooq, M., & Galster, S. (2018). Discriminative training of subject-dependent Gaussian mixture models for portable SSVEP identification. Smart Health, 9–10, 76–87. https://doi.org/10.1016/j.smhl.2018.07.023

Demir, A. F., Arslan, H., & Uysal, I. (2019). Bio-Inspired Filter Banks for Frequency Recognition of SSVEP-Based Brain–Computer Interfaces. IEEE Access, 7, 160295–160303. https://doi.org/10.1109/ACCESS.2019.2951327

Do, T.-T. N., & Huynh, T. T. (2021). Evaluate effects of multiple users in collaborative Brain-Computer Interfaces: A SSVEP study. BioRxiv. https://doi.org/10.1101/2021.03.05.434173.abstract

Erkan, E., & Akbaba, M. (2018). A study on performance increasing in SSVEP based BCI application. Engineering Science and Technology, an International Journal, 21(3), 421–427. https://doi.org/10.1016/j.jestch.2018.04.002

Fernandez-Fraga, S. M., Aceves-Fernandez, M. A., Rodríguez-Resendíz, J., Pedraza-Ortega, J. C., & Ramos-Arreguín, J. M. (2019). Steady-state visual evoked potential (SSEVP) from EEG signal modeling based upon recurrence plots. Evolving Systems, 10(2), 97–109. https://doi.org/10.1007/s12530-017-9213-9

Gao, Q., Zhang, Y., Wang, Z., Dong, E., Song, X., & Song, Y. (2019). Channel Projection-Based CCA Target Identification Method for an SSVEP-Based BCI System of Quadrotor Helicopter Control. Computational Intelligence and Neuroscience, 2019, 1–13. https://doi.org/10.1155/2019/2361282

Huang, J., Zhang, Z.-Q., Xiong, B., Wang, Q., Wan, B., Li, F., & Yang, P. (2023). Cross-Subject Transfer Method Based on Domain Generalization for Facilitating Calibration of SSVEP-Based BCIs. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 31, 3307–3319. https://doi.org/10.1109/TNSRE.2023.3305202

Ibanez-Soria, D., Garcia-Ojalvo, J., & Ruffini, G. (2018). Echo State Networks Ensemble for SSVEP Dynamical Online Detection. BioRxiv, 268581. https://doi.org/10.1101/268581.abstract

Jiao, Y., Zhang, Y., Wang, Y., Wang, B., Jin, J., & Wang, X. (2018). A Novel Multilayer Correlation Maximization Model for Improving CCA-Based Frequency Recognition in SSVEP Brain–Computer Interface. International Journal of Neural Systems, 28(04), 1750039. https://doi.org/10.1142/S0129065717500393

Keihani, A., Shirzhiyan, Z., Farahi, M., Shamsi, E., Mahnam, A., Makkiabadi, B., Haidari, M. R., & Jafari, A. H. (2018). Use of Sine Shaped High-Frequency Rhythmic Visual Stimuli Patterns for SSVEP Response Analysis and Fatigue Rate Evaluation in Normal Subjects. Frontiers in Human Neuroscience, 12. https://doi.org/10.3389/fnhum.2018.00201

Kim, D., Byun, W., Ku, Y., & Kim, J.-H. (2019). High-Speed Visual Target Identification for Low-Cost Wearable Brain-Computer Interfaces. IEEE Access, 7, 55169–55179. https://doi.org/10.1109/ACCESS.2019.2912997

Kim, H., & Im, C.-H. (2021). Influence of the Number of Channels and Classification Algorithm on the Performance Robustness to Electrode Shift in Steady-State Visual Evoked Potential-Based Brain-Computer Interfaces. Frontiers in Neuroinformatics, 15. https://doi.org/10.3389/fninf.2021.750839

Kołodziej, M., Majkowski, A., Rak, R. J., & Wiszniewski, P. (2023). Convolutional Neural Network-Based Classification of Steady-State Visually Evoked Potentials with Limited Training Data. Applied Sciences, 13(24), 13350. https://doi.org/10.3390/app132413350

Landschaft, A., Antweiler, D., Mackay, S., Kugler, S., Rüping, S., Wrobel, S., Höres, T., & Allende-Cid, H. (2024). Implementation and evaluation of an additional GPT-4-based reviewer in PRISMA-based medical systematic literature reviews. International Journal of Medical Informatics, 189(June). https://doi.org/10.1016/j.ijmedinf.2024.105531

Lee, H. K., & Choi, Y.-S. (2021). Enhancing SSVEP-Based Brain-Computer Interface with Two-Step Task-Related Component Analysis. Sensors, 21(4), 1315. https://doi.org/10.3390/s21041315

Li, C., Li, N., Qiu, Y., Peng, Y., Wang, Y., Deng, L., Ma, T., Li, F., Yao, D., & Xu, P. (2022). Multimodal collaborative BCI system based on the improved CSP feature extraction algorithm. Virtual Reality & Intelligent Hardware, 4(1), 22–37. https://doi.org/10.1016/j.vrih.2022.01.002

Li, D., Wang, X., Dou, M., Zhao, Y., Cui, X., Xiang, J., & Wang, B. (2024). Multi-Stimulus Least-Squares Transformation With Online Adaptation Scheme to Reduce Calibration Effort for SSVEP-Based BCIs. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 32, 1606–1615. https://doi.org/10.1109/TNSRE.2024.3387283

Lin, Z., Zhang, C., Wu, W., & Gao, X. (2007). Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs. IEEE Transactions on Biomedical Engineering, 54(6), 1172–1176. https://doi.org/10.1109/TBME.2006.889197

Liu, A., Liu, Q., Zhang, X., Chen, X., & Chen, X. (2021). Muscle Artifact Removal Toward Mobile SSVEP-Based BCI: A Comparative Study. IEEE Transactions on Instrumentation and Measurement, 70, 1–12. https://doi.org/10.1109/TIM.2021.3085944

Liu, B., Wang, Y., Gao, X., & Chen, X. (2022). eldBETA: A Large Eldercare-oriented Benchmark Database of SSVEP-BCI for the Aging Population. Scientific Data, 9(1), 252. https://doi.org/10.1038/s41597-022-01372-9

Liu, Y., Dai, W., Liu, Y., Hu, D., Yang, B., & Zhou, Z. (2024). An SSVEP-based BCI with 112 targets using frequency spatial multiplexing. Journal of Neural Engineering, 21(3). https://doi.org/10.1088/1741-2552/ad4091

Mijani, A., Cherloo, M. N., Tang, H., & Zhan, L. (2023). Spectrum-Enhanced TRCA (SE-TRCA): A novel approach for direction detection in SSVEP-based BCI. Computers in Biology and Medicine, 166, 107488. https://doi.org/10.1016/j.compbiomed.2023.107488

Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., Shekelle, P., & Stewart, L. A. (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Systematic Reviews, 4(1), 1. https://doi.org/10.1186/2046-4053-4-1

Mu, J., Grayden, D. B., Tan, Y., & Oetomo, D. (2022). Frequency set selection for multi-frequency steady-state visual evoked potential-based brain-computer interfaces. Frontiers in Neuroscience, 16. https://doi.org/10.3389/fnins.2022.1057010

Mu, J., Tan, Y., Grayden, D. B., & Oetomo, D. (2023). Linear Diophantine equation (LDE) decoder: A training‐free decoding algorithm for multifrequency SSVEP with reduced computation cost. Asian Journal of Control, 25(5), 3292–3304. https://doi.org/10.1002/asjc.3050

Neghabi, M., Marateb, H. R., & Mahnam, A. (2019). A Comprehensive Comparison Between Steady-State Visual Evoked Potentials Frequency Estimation Methods in Brain-Computer Interface With The Minimum Number of EEG Channels. Basic and Clinical Neuroscience Journal, 10(3), 245–256. https://doi.org/10.32598/bcn.9.10.200

Niknamian, S. (2019). The Introduction of Designing a Hybrid Brain Computer Interface System. Biomedical Journal of Scientific & Technical Research, 16(2). https://doi.org/10.26717/BJSTR.2019.16.002828

Niu, L., Bin, J., kong shuai Wang, J., Zhan, G., Zhang, L., Gan, Z., & Kang, X. (2023). A dynamically optimized time-window length for SSVEP based hybrid BCI-VR system. Biomedical Signal Processing and Control, 84, 104826. https://doi.org/10.1016/j.bspc.2023.104826

Norizadeh Cherloo, M., Kashefi Amiri, H., & Daliri, M. R. (2022). Spatio-Spectral CCA (SS-CCA): A novel approach for frequency recognition in SSVEP-based BCI. Journal of Neuroscience Methods, 371, 109499. https://doi.org/10.1016/j.jneumeth.2022.109499

Ortiz-Martínez, V. M., Andreo-Martínez, P., García-Martínez, N., Pérez de los Ríos, A., Hernández-Fernández, F. J., & Quesada-Medina, J. (2019). Approach to biodiesel production from microalgae under supercritical conditions by the PRISMA method. Fuel Processing Technology, 191, 211–222. https://doi.org/10.1016/j.fuproc.2019.03.031

Pan, Y., Li, N., Zhang, Y., Xu, P., & Yao, D. (2024). Short-length SSVEP data extension by a novel generative adversarial networks based framework. Cognitive Neurodynamics. https://doi.org/10.1007/s11571-024-10134-9

Peng, F., Li, M., Zhao, S., Xu, Q., Xu, J., & Wu, H. (2022). Control of a Robotic Arm With an Optimized Common Template-Based CCA Method for SSVEP-Based BCI. Frontiers in Neurorobotics, 16. https://doi.org/10.3389/fnbot.2022.855825

Peng, Y., Wang, Z., Wong, C. M., Nan, W., Rosa, A., Xu, P., Wan, F., & Hu, Y. (2020). Changes of EEG phase synchronization and EOG signals along the use of steady state visually evoked potential-based brain computer interface. Journal of Neural Engineering, 17(4), 045006. https://doi.org/10.1088/1741-2552/ab933e

Podmore, J. J., Breckon, T. P., Aznan, N. K. N., & Connolly, J. D. (2019). On the Relative Contribution of Deep Convolutional Neural Networks for SSVEP-Based Bio-Signal Decoding in BCI Speller Applications. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 27(4), 611–618. https://doi.org/10.1109/TNSRE.2019.2904791

Putro, P. A., Sumardi, T., Sulaeman, A. S., Roza, L., Ramza, H., & Anugrah, D. S. B. (2023). Synthesizing Cellulose and Its Derivatives from Pineapple Peel: A Systematic Literature Review. Biointerface Research in Applied Chemistry, 13(6), 1–16. https://doi.org/10.33263/BRIAC136.575

Qin, K., Wang, R., & Zhang, Y. (2021). Filter Bank-Driven Multivariate Synchronization Index for Training-Free SSVEP BCI. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 29, 934–943. https://doi.org/10.1109/TNSRE.2021.3073165

Sakkalis, V., Krana, M., Farmaki, C., Bourazanis, C., Gaitatzis, D., & Pediaditis, M. (2022). Augmented Reality Driven Steady-State Visual Evoked Potentials for Wheelchair Navigation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 30, 2960–2969. https://doi.org/10.1109/TNSRE.2022.3215695

Shao, L., Zhang, L., Belkacem, A. N., Zhang, Y., Chen, X., Li, J., & Liu, H. (2020). EEG-Controlled Wall-Crawling Cleaning Robot Using SSVEP-Based Brain-Computer Interface. Journal of Healthcare Engineering, 2020, 1–11. https://doi.org/10.1155/2020/6968713

Sulaeman, A. S., Putro, P. A., & Nikmatin, S. (2022). Thermal studies of hydrogels based on poly(acrylic acid) and its copolymers by differential scanning calorimetry: A systematic literature review. Polymers and Polymer Composites, 30, 1–10. https://doi.org/10.1177/09673911221094022

Sun, Y., Ding, W., Liu, X., Zheng, D., Chen, X., Hui, Q., Na, R., Wang, S., & Fan, S. (2022). Cross-subject fusion based on time-weighting canonical correlation analysis in SSVEP-BCIs. Measurement, 199, 111524. https://doi.org/10.1016/j.measurement.2022.111524

Tan, Y., Lin, Y., Zang, B., Gao, X., Yong, Y., Yang, J., & Li, S. (2022). An autonomous hybrid brain-computer interface system combined with eye-tracking in virtual environment. Journal of Neuroscience Methods, 368, 109442. https://doi.org/10.1016/j.jneumeth.2021.109442

Tanaka, H., Katura, T., & Sato, H. (2013). Task-related component analysis for functional neuroimaging and application to near-infrared spectroscopy data. NeuroImage, 64, 308–327. https://doi.org/10.1016/j.neuroimage.2012.08.044

Trifu, A., Smîdu, E., Badea, D. O., Bulboacă, E., & Haralambie, V. (2022). Applying the PRISMA method for obtaining systematic reviews of occupational safety issues in literature search. MATEC Web of Conferences, 354, 00052. https://doi.org/10.1051/matecconf/202235400052

Venkatesh, S., Miranda, E. R., & Braund, E. (2023). SSVEP-based brain–computer interface for music using a low-density EEG system. Assistive Technology, 35(5), 378–388. https://doi.org/10.1080/10400435.2022.2084182

Wang, S., Ji, B., Shao, D., Chen, W., & Gao, K. (2023). A Methodology for Enhancing SSVEP Features Using Adaptive Filtering Based on the Spatial Distribution of EEG Signals. Micromachines, 14(5), 976. https://doi.org/10.3390/mi14050976

Wang, X., Liu, A., Wu, L., Li, C., Liu, Y., & Chen, X. (2023). A Generalized Zero-Shot Learning Scheme for SSVEP-Based BCI System. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 31, 863–874. https://doi.org/10.1109/TNSRE.2023.3235804

Waytowich, N., Lawhern, V. J., Garcia, J. O., Cummings, J., Faller, J., Sajda, P., & Vettel, J. M. (2018). Compact convolutional neural networks for classification of asynchronous steady-state visual evoked potentials. Journal of Neural Engineering, 15(6), 066031. https://doi.org/10.1088/1741-2552/aae5d8

Wei, Q., Zhang, Y., Wang, Y., & Gao, X. (2023). A Canonical Correlation Analysis-Based Transfer Learning Framework for Enhancing the Performance of SSVEP-Based BCIs. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 31, 2809–2821. https://doi.org/10.1109/TNSRE.2023.3288397

Wei, Q., Zhu, S., Wang, Y., Gao, X., Guo, H., & Wu, X. (2019). Maximum Signal Fraction Analysis for Enhancing Signal-to-Noise Ratio of EEG Signals in SSVEP-Based BCIs. IEEE Access, 7, 85452–85461. https://doi.org/10.1109/ACCESS.2019.2925078

Wittevrongel, B., Khachatryan, E., Fahimi Hnazaee, M., Camarrone, F., Carrette, E., De Taeye, L., Meurs, A., Boon, P., Van Roost, D., & Van Hulle, M. M. (2018). Decoding Steady-State Visual Evoked Potentials From Electrocorticography. Frontiers in Neuroinformatics, 12. https://doi.org/10.3389/fninf.2018.00065

Wong, C. M., Wang, B., Wang, Z., Lao, K. F., Rosa, A., & Wan, F. (2020). Spatial Filtering in SSVEP-Based BCIs: Unified Framework and New Improvements. IEEE Transactions on Biomedical Engineering, 67(11), 3057–3072. https://doi.org/10.1109/TBME.2020.2975552

Wu, Y., Yang, R., Chen, W., Li, X., & Niu, J. (2022). Research on Unsupervised Classification Algorithm Based on SSVEP. Applied Sciences, 12(16), 8274. https://doi.org/10.3390/app12168274

Xing, X., Wang, Y., Pei, W., Guo, X., Liu, Z., Wang, F., Ming, G., Zhao, H., Gui, Q., & Chen, H. (2018). A High-Speed SSVEP-Based BCI Using Dry EEG Electrodes. Scientific Reports, 8(1), 14708. https://doi.org/10.1038/s41598-018-32283-8

Yan, W., He, B., Zhao, J., Wu, Y., Du, C., & Xu, G. (2023). Frequency Domain Filtering Method for SSVEP-EEG Preprocessing. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 31, 2079–2089. https://doi.org/10.1109/TNSRE.2023.3266488

Yan, W., Xu, G., Du, Y., & Chen, X. (2022). SSVEP-EEG Feature Enhancement Method Using an Image Sharpening Filter. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 30, 115–123. https://doi.org/10.1109/TNSRE.2022.3142736

Yang, D., Nguyen, T.-H., & Chung, W.-Y. (2020). A Synchronized Hybrid Brain-Computer Interface System for Simultaneous Detection and Classification of Fusion EEG Signals. Complexity, 2020, 1–11. https://doi.org/10.1155/2020/4137283

Youssef Ali Amer, A., Wittevrongel, B., & Van Hulle, M. (2018). Accurate Decoding of Short, Phase-Encoded SSVEPs. Sensors, 18(3), 794. https://doi.org/10.3390/s18030794

Zarei, A., & Asl, B. M. (2024). Enhancing multi-class SSVEP classification performance using regularized covariance estimators, spatiotemporal beamforming, and short-time EEG trials. Measurement: Journal of the International Measurement Confederation, 224. https://doi.org/10.1016/j.measurement.2023.113861

Zhang, S., An, D., Liu, J., Wei, Y., & Sun, F. (2024). Unsupervised multi-source variational domain adaptation for inter-subject SSVEP-based BCIs. Expert Systems with Applications, 238. https://doi.org/10.1016/j.eswa.2023.122155

Zhang, S., Cui, H., Li, Y., Chen, X., Gao, X., & Guan, C. (2024). Improving SSVEP-BCI Performance Through Repetitive Anodal tDCS-Based Neuromodulation: Insights From Fractal EEG and Brain Functional Connectivity. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 32, 1647–1656. https://doi.org/10.1109/TNSRE.2024.3389051

Zhang, S., Wang, S., Zheng, D., Ma, K., Zhang, Y., & Xiang, W. (2019). High‐resolution SSVEP‐based brain–computer interface. The Journal of Engineering, 2019(23), 8654–8657. https://doi.org/10.1049/joe.2018.9077

Zhang, X., Xu, G., Ravi, A., Yan, W., & Jiang, N. (2019). Fusing Frontal and Occipital EEG Features to Detect “Brain Switch” by Utilizing Convolutional Neural Network. IEEE Access, 7, 82817–82825. https://doi.org/10.1109/ACCESS.2019.2924185

Zhang, Y., Guo, D., Li, F., Yin, E., Zhang, Y., Li, P., Zhao, Q., Tanaka, T., Yao, D., & Xu, P. (2018). Correlated Component Analysis for Enhancing the Performance of SSVEP-Based Brain-Computer Interface. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 26(5), 948–956. https://doi.org/10.1109/TNSRE.2018.2826541

Zhang, Y., Qian, K., Xie, S. Q., Shi, C., Li, J., & Zhang, Z.-Q. (2023). SSVEP-Based Brain-Computer Interface Controlled Robotic Platform With Velocity Modulation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 31, 3448–3458. https://doi.org/10.1109/TNSRE.2023.3308778

Zhang, Y., Yin, E., Li, F., Zhang, Y., Tanaka, T., Zhao, Q., Cui, Y., Xu, P., Yao, D., & Guo, D. (2018). Two-Stage Frequency Recognition Method Based on Correlated Component Analysis for SSVEP-Based BCI. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 26(7), 1314–1323. https://doi.org/10.1109/TNSRE.2018.2848222

Zhang, Y., Zhou, G., Jin, J., Wang, X., & Cichocki, A. (2014). Frequency Recognition in SSVEP-based BCI using Multiset Canonical Correlation Analysis. International Journal of Neural Systems, 24(04), 1450013. https://doi.org/10.1142/S0129065714500130

Zhao, D., Wang, T., Tian, Y., & Jiang, X. (2021). Filter Bank Convolutional Neural Network for SSVEP Classification. IEEE Access, 9, 147129–147141. https://doi.org/10.1109/ACCESS.2021.3124238

Zhao, J., Zhang, W., Wang, J. H., Li, W., Lei, C., Chen, G., Liang, Z., & Li, X. (2020). Decision-Making Selector (DMS) for Integrating CCA-Based Methods to Improve Performance of SSVEP-Based BCIs. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(5), 1128–1137. https://doi.org/10.1109/TNSRE.2020.2983275

Zhou, Y., Hu, L., Yu, T., & Li, Y. (2021). A BCI-Based Study on the Relationship Between the SSVEP and Retinal Eccentricity in Overt and Covert Attention. Frontiers in Neuroscience, 15. https://doi.org/10.3389/fnins.2021.746146

Zhu, Y., Li, Y., Lu, J., & Li, P. (2021). EEGNet With Ensemble Learning to Improve the Cross-Session Classification of SSVEP Based BCI From Ear-EEG. IEEE Access, 9, 15295–15303. https://doi.org/10.1109/ACCESS.2021.3052656

Author Biographies

Muhamad Agung Suhendra, Universitas Mandiri, Subang

Iqbal Robiyana, Universitas Mandiri, Subang

Tedi Sumardi, Universitas Mandiri, Subang

Ahmad Sofyan Sulaeman, Universitas Mandiri, Subang

Permono Adi Putro, Universitas Mandiri, Subang

Nurizati, Indo Global Mandiri University

Usep Tatang Suryadi, Indo Global Mandiri University

Anderias Eko Wijaya, Universitas Mandiri, Subang

Sunanto Ajidarmo, Cakra Vimana Diinamycx

Arief Budiman, Cakra Vimana Diinamycx

M. Faizal Amri, National Research and Innovation Agency, Bandung

License

Copyright (c) 2024 Muhamad Agung Suhendra, Iqbal Robiyana, Tedi Sumardi, Ahmad Sofyan Sulaeman, Permono Adi Putro, Nurizati, Usep Tatang Suryadi, Anderias Eko Wijaya, Sunanto Ajidarmo, Arief Budiman, M. Faizal Amri

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).