Metagenomic Exploration of the Black Soldier Fly (Hermetia illucens) as an Organic Waste Decomposer for Environmental Bioremediation Efforts
DOI:
10.29303/jppipa.v11i1.9926Published:
2025-02-12Issue:
Vol. 11 No. 1 (2025): JanuaryKeywords:
Bioremediation agents, Hermetia Illucens, microbiota, Metamorphosis, BSF Larval metagenomicsResearch Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
The Black Soldier Fly (BSF) (Hermetia illucens Linnaeus, 1758) has long been recognized as an organism used in organic waste processing through bioconversion methods. H. illucens is known to digest organic materials into nutrient sources utilized for biomass formation with the assistance of decomposer microbiota. However, research on the structure and composition of its microbiota remains limited. This study aims to identify microbiota and their structural composition in both the larval and adult fly phases, based on organic waste feeding in tropical regions. Additionally, it seeks to provide recommendations for relevant stakeholders in identifying potential environmental bioremediation agents. The research method employed is a survey study with quantitative sample analysis. The amplification process in this study uses primers from the (V1-V9) regions of the 16S rRNA gene. Data analysis is conducted using the QIIME (Quantitative Insights into Microbial Ecology) method, utilizing high-throughput sequencing community data with QIIME2 software version 3.5.3. Microbiota from the families Lactobacillaceae and Morganellaceae have been identified as dominant in larvae, while Staphylococcaceae and Bacillaceae dominate in adult flies. Morganella morganii, Herbaspirillum piri, Dysgonomonas capnocytophagoides, and Clostridium intestinale are potential candidates for organic waste bioremediation from BSF larvae. Meanwhile, Sphingobacterium wenxiniae, Lachnoclostridium phytofermentans, Mammaliicoccus sciuri, and Corticicoccus populi are bioremediation candidates from BSF flies. The genera Enterococcus, Morganella, and Dysgonomonas are found in both temperate and tropical climate regions. However, Providencia, Klebsiella, Scrofimicrobium, and Actinomyces, which are found in the gut of BSF larvae in temperate regions, are absent in BSF larvae from tropical Indonesia. Conversely, Limosilactobacillus, Entomomonas, Lachnoclostridium, and Clostridium are not found in the gut of BSF larvae in temperate regions.
References
Amelia, N. F., & Rafidah. (2021). Kemampuan Lalat Tentara Hitam (Hermetia illucens) Dalam Mengurai Sampah Organik Menjadi Kompos. Sulolipu:Media Komunikasi Sivitas Akademika Dan Masyarakat, 21(1), 1–7. https://doi.org/https://doi.org/10.32382/sulolipu.v21i1.2043
Auger, L., Deschamps, M. H., Vandenberg, G., & Derome, N. (2023). Microbiota is structured by gut regions, life stage, and diet in the Black Soldier Fly (Hermetia illucens). Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1221728
Breitwieser, F. P., & Salzberg, S. L. (2020). Pavian: Interactive analysis of metagenomics data for microbiome studies and pathogen identification. Bioinformatics, 36(4), 1303–1304. https://doi.org/10.1093/bioinformatics/btz715
Bruno, D., Bonelli, M., De Filippis, F., Lelio, I. Di, Tettamanti, G., Casartelli, M., Ercolini, D., & Caccia, S. (2019). The Intestinal Microbiota of Hermetia illucens Larvae Is Affected by Diet and Shows a Diverse Composition in the Different Midgut Regions. https://doi.org/10.1128/AEM
Byappanahalli, M. N., Nevers, M. B., Korajkic, A., Staley, Z. R., & Harwood, V. J. (2012). Enterococci in the Environment. Microbiology and Molecular Biology Reviews, 76(4), 685–706. https://doi.org/10.1128/mmbr.00023-12
Chen, J., Zhang, J., & Rosen, B. P. (2022). Organoarsenical tolerance in Sphingobacterium wenxiniae, a bacterium isolated from activated sludge. Environmental Microbiology, 24(2), 762–771. https://doi.org/10.1111/1462-2920.15599
Dahal, U., Paul, K., & Gupta, S. (2023). The multifaceted genus Acinetobacter : from infection to bioremediation. In Journal of Applied Microbiology (Vol. 134, Issue 8). Oxford University Press. https://doi.org/10.1093/jambio/lxad145
Darmawan, A., Soesilo, T. E. B., & Wahyono, S. (2020). Model Optimasi Pengelolaan Sampah Di TPA. Jurnal Ilmiah Pendidikan Lingkungan Dan Pembangunan, 21(02), 13–29. https://doi.org/10.21009/plpb.212.02
De Luca, V., Giovannuzzi, S., Supuran, C. T., & Capasso, C. (2022). May Sulfonamide Inhibitors of Carbonic Anhydrases from Mammaliicoccus sciuri Prevent Antimicrobial Resistance Due to Gene Transfer to Other Harmful Staphylococci? International Journal of Molecular Sciences, 23(22). https://doi.org/10.3390/ijms232213827
Dortet, L., Legrand, P., Soussy, C. J., & Cattoir, V. (2006). Bacterial identification, clinical significance, and antimicrobial susceptibilities of Acinetobacter ursingii and Acinetobacter schindleri, two frequently misidentified opportunistic pathogens. Journal of Clinical Microbiology, 44(12), 4471–4478. https://doi.org/10.1128/JCM.01535-06
Fangt, W., Lit, Y., Xue, H., Tian, G., Wang, L., Guo, M. W., & Piao, C. G. (2015). Corticibacter populi gen. nov., sp. nov., a new member of the family Comamonadaceae, from the bark of Populus euramericana. International Journal of Systematic and Evolutionary Microbiology, 65(10), 3333–3338. https://doi.org/10.1099/ijsem.0.000418
Hanifah, N. (2022). Pemanfaatan Budidaya Black Soldier Fly (BSF, Hermetia illucens) Dalam Mereduksi Gas Metana Dan Pembuatan Briket Arang.
Hegazi, E. (2023). Assessing Fungal and Bacterial Microbiome Diversity in The Black Soldier Fly (Hermetia illucens L.) Gut and Its Different Feeding Media. Advances in Biotechnology & Microbiology, 17(2). https://doi.org/10.19080/aibm.2023.17.555958
Hironaga, M., Yamane, K., Inaba, M., Haga, Y., & Arakawa, Y. (2008). Characterization and Antimicrobial Susceptibility of Dysgonomonas capnocytophagoides Isolated from Human Blood Sample. In Jpn. J. Infect. Dis (Vol. 61). https://doi.org/https://doi.org/10.7883/yoken.JJID.2008.212
IJdema, F., De Smet, J., Crauwels, S., Lievens, B., & Van Campenhout, L. (2022). Meta-analysis of the black soldier fly ( Hermetia illucens ) microbiota based on 16S rRNA gene amplicon sequencing. https://doi.org/10.1101/2022.01.17.476578
Khelaifia, S., Lagier, J. C., Bibi, F., Azhar, E. I., Croce, O., Padmanabhan, R., Jiman-Fatani, A. A., Yasir, M., Robert, C., Andrieu, C., Fournier, P. E., & Raoult, D. (2016). Microbial Culturomics to Map Halophilic Bacterium in Human Gut: Genome Sequence and Description of Oceanobacillus jeddahense sp. nov. OMICS A Journal of Integrative Biology, 20(4), 248–258. https://doi.org/10.1089/omi.2016.0004
Klammsteiner, T., Walter, A., Bogataj, T., Heussler, C. D., Stres, B., Steiner, F. M., Schlick-Steiner, B. C., Arthofer, W., & Insam, H. (2020). The Core Gut Microbiome of Black Soldier Fly (Hermetia illucens) Larvae Raised on Low-Bioburden Diets. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.00993
Kumar, P., Maurya, A., Garg, S., Yadav, A., Mishra, V., & Sharma, R. S. (2020). Dead biomass of Morganella morganii acts as an efficient adsorbent to remove Pb(II) from aqueous solution in different aeration–agitation and pH conditions. SN Applied Sciences, 2(7). https://doi.org/10.1007/s42452-020-3013-8
Laupland, K. B., Paterson, D. L., Edwards, F., Stewart, A. G., & Harris, P. N. A. (2022). Morganella morganii, an Emerging Cause of Bloodstream Infections. Microbiology Spectrum, 10(3). https://doi.org/10.1128/spectrum.00569-22
Lee, J., Jo, J., Seo, H., Han, S. W., & Kim, D. H. (2024). The Probiotic Properties and Safety of Limosilactobacillus mucosae NK41 and Bifidobacterium longum NK46. Microorganisms, 12(4). https://doi.org/10.3390/microorganisms12040776
Li, Y., Wang, S. K., Xue, H., Chang, J. P., Guo, L. M., & Yang, X. Q. (2017). Corticicoccus populi gen. nov., sp. nov., a member of the family Staphylococcaceae, isolated from symptomatic bark of Populus × euramericana canker. In International Journal of Systematic and Evolutionary Microbiology (Vol. 67, Issue 4, pp. 789–794). Microbiology Society. https://doi.org/10.1099/ijsem.0.001602
Liu, W., & Yang, S. S. (2014). Oceanobacillus aidingensis sp. nov., a moderately halophilic bacterium. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 105(5), 801–808. https://doi.org/10.1007/s10482-014-0128-1
Mashraqi, A., Eshetea, B. B., & Eribo, B. (2023). Draft Genome Sequences of Probiotic Candidate Schleiferilactobacillus harbinensis Isolated from Fermented Milk “ Laban ” . Microbiology Resource Announcements, 12(1). https://doi.org/10.1128/mra.01043-22
Mosconi, M., Fontana, A., Daza, M. V. B., Bassi, D., & Gallo, A. (2023). Clostridium tyrobutyricum occurrence in silages and cattle feed: Use of molecular and simulation data to optimize predictive models. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1118646
Platzer, A., Polzin, J., Rembart, K., Han, P. P., Rauer, D., & Nussbaumer, T. (2018). BioSankey: Visualization of Microbial Communities Over Time. Journal of Integrative Bioinformatics, 15(4). https://doi.org/10.1515/jib-2017-0063
Prajnawita, D., Moelyaningrum, A. D., & Ningrum, P. T. (2020). Analysis Flies Density at Final Waste Disposal Jember Distric Area, Indonesia (Studi at Pakusari landfill and Ambulu landfill). Jurnal Kesehatan Lingkungan, 12(2), 136–143. https://doi.org/10.20473/jkl.v12i2.2020.136-143
Princy, S., Sathish, S. S., Cibichakravarthy, B., & Prabagaran, S. R. (2020). Hexavalent chromium reduction by Morganella morganii (1Ab1) isolated from tannery effluent contaminated sites of Tamil Nadu, India. Biocatalysis and Agricultural Biotechnology, 23. https://doi.org/10.1016/j.bcab.2019.101469
Rusli, Khaer, A., Budirman, & Andini, M. (2022). Pemanfaatan Lalat Tentara Hitam (Hermetia illucens) Dalam Mengolah Sampah Menjadi Kompos. In Media Implementasi Riset Kesehatan (Vol. 73, Issue 2). https://doi.org/https://doi.org/10.32382/mirk.v3i2.3151
Sundberg, C., Franke-Whittle, I. H., Kauppi, S., Yu, D., Romantschuk, M., Insam, H., & Jönsson, H. (2011). Characterisation of source-separated household waste intended for composting. Bioresource Technology, 102(3), 2859–2867. https://doi.org/10.1016/j.biortech.2010.10.075
Swei, A., & Kwan, J. Y. (2017). Tick microbiome and pathogen acquisition altered by host blood meal. The International Society for Microbial Ecology Journal, 11, 813–816. https://doi.org/10.1038/ismej.2016.152
Tan, L., & Grewal, P. S. (2001). Pathogenicity of Moraxella osloensis, a Bacterium Associated with the Nematode Phasmarhabditis hermaphrodita, to the Slug Deroceras reticulatum. Applied and Environmental Microbiology, 67(3–12), 5010–5016. https://doi.org/10.1128/aem.67.11.5010-5016.2001
Tomberlin, J. K., Adler, P. H., & Myers, H. M. (2009). Development of the Black Soldier Fly (Diptera: Stratiomyidae) in Relation to Temperature. Physiological Ecology, 38(3), 930–934. https://doi.org/https://doi.org/10.1603/022.038.0347
Utami, P. A., Kunda, R. M., & Anaktototy, Y. (2024). First metagenome report of Haemaphysalis bispinosa ticks of Moa buffalo from Southwest Maluku District, Indonesia. NUSANTARA BIOSCIENCE. https://doi.org/10.13057/nusbiosci/n160116
Vandeweyer, D., Bruno, D., Bonelli, M., IJdema, F., Lievens, B., Crauwels, S., Casartelli, M., Tettamanti, G., & De Smet, J. (2023). Bacterial biota composition in gut regions of black soldier fly larvae reared on industrial residual streams: revealing community dynamics along its intestinal tract. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1276187
Venkatachalam, J., Mohan, H., & Seralathan, K. K. (2023). Significance of Herbaspirillum sp. in biodegradation and biodetoxification of herbicides, pesticides, hydrocarbons and heavy metals – A review. In Environmental Research (Vol. 239). Academic Press Inc. https://doi.org/10.1016/j.envres.2023.117367
Wang, J., Su, Q., Zhang, X., Li, C., Luo, S., Zhou, X., & Zheng, H. (2020). Entomomonas moraniae gen. Nov., sp. nov., a member of the family Pseudomonadaceae isolated from asian honey bee gut, possesses a highly reduced genome. International Journal of Systematic and Evolutionary Microbiology, 70(1), 165–171. https://doi.org/10.1099/ijsem.0.003731
Wu, J., Wang, J., Lin, Z., Liu, C., Zhang, Y., Zhang, S., Zhou, M., Zhao, J., Liu, H., & Ma, X. (2023). Clostridium butyricum alleviates weaned stress of piglets by improving intestinal immune function and gut microbiota. Food Chemistry, 405. https://doi.org/10.1016/j.foodchem.2022.135014
Xiao, T., He, X., Cheng, G., Kuang, H., Ma, X., Yusup, K., Hamdun, M., Gulsimay, A., Fang, C., & Rahman, E. (2013). Sphingobacterium hotanense sp. nov., isolated from soil of a Populus euphratica forest, and emended descriptions of Sphingobacterium daejeonense and Sphingobacterium shayense. International Journal of Systematic and Evolutionary Microbiology, 63(PART3), 815–820. https://doi.org/10.1099/ijs.0.030155-0
Xu, G., Chang, J., Xue, H., Guo, M., Piao, C. G., & Li, Y. (2018). Herbaspirillum piri sp. nov., isolated from bark of a pear tree. International Journal of Systematic and Evolutionary Microbiology, 68(11), 3652–3656. https://doi.org/10.1099/ijsem.0.003050
Yuwita, R., & Fitria, L. (2022). Teknologi Biokonversi Sampah Organik Rumah Makan Dengan Larva Black Soldier Fly (BSF). In Jurnal Teknologi Lingkungan Lahan Basah (Vol. 10, Issue 2). https://doi.org/https://doi.org/10.26418/jtllb.v10i2.56669
Zaplana, T., Miele, S., & Tolonen, A. C. (2023). Lachnospiraceae are emerging industrial biocatalysts and biotherapeutics. In Frontiers in Bioengineering and Biotechnology (Vol. 11). Frontiers Media SA. https://doi.org/10.3389/fbioe.2023.1324396
Author Biographies
irwanto, Terbuka University
Maman Rumanta, Terbuka University
Rony Marsyal Kunda, Pattimura University
License
Copyright (c) 2025 irwanto, Maman Rumanta, Rony Marsyal Kunda

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).