Customer Segmentation Based on Recency, Frequency, Monetary Analysis Using K-Means Algorithms in Apple Ecosystem

Authors

Edwin Setiawan , Bayu Surarso , Dinar Mutiara Kusumo Nugraheni

DOI:

10.29303/jppipa.v11i2.10011

Published:

2025-02-28

Issue:

Vol. 11 No. 2 (2025): February

Keywords:

Customer Segmentation, Elbow Method, K-Means clustering, RFM Models, Silhouette Coefficient

Research Articles

Downloads

How to Cite

Setiawan, E., Surarso, B., & Nugraheni, D. M. K. (2025). Customer Segmentation Based on Recency, Frequency, Monetary Analysis Using K-Means Algorithms in Apple Ecosystem. Jurnal Penelitian Pendidikan IPA, 11(2), 634–641. https://doi.org/10.29303/jppipa.v11i2.10011

Downloads

Metrics

PDF views
32
Feb 28 '25Mar 01 '25Mar 04 '25Mar 07 '25Mar 10 '25Mar 13 '25Mar 16 '25Mar 19 '25Mar 22 '25Mar 25 '25Mar 28 '255.0
|

Abstract

One of the companies in Semarang engaged in gadget sales services has an Apple Ecosystem information system for selling products from an exclusive brand, Apple. Inside there are sales transactions and also service devices iPad, Macbook Air, Macbook Pro, AirPods, Mac, and Apple Accsessories. This research uses purchase transaction data from Apple Ecosystem customers for the period 2023. The use of RFM (Recency, Frequency, Monetary) analysis helps in determining the attributes used for customer segmentation. To determine the optimal number of clusters from the RFM dataset, the Elbow method is applied. The dataset generated from RFM is grouped using the K-Means algorithm, the quality of the algorithm will be compared in cluster formation using the Silhouette Coefficient method. All procedures will be loaded into the Customer Segmentation App (RFM Clustering) web application. Customer segmentation from RFM datasets that have been clustered produces 3 optimal clusters, namely Cluster 2 is High Spenders with 326 customers, Cluster 0 is VIP Customers, Cluster 1 is Frequent Buyers. Cluster validation of k-means using the silhouette coefficient produces a value of 0.3524.

References

Alam. A., Ahamad. M. K. (2024). K-Means Hybridization with Enhanced Firefly Algorithm for High-Dimension Automatic Clustering. Journal of Advance Research in Aplied Sciences and Engineering Technology. 33(3). 137-153. https://doi.org/10.37934/araset.33.3.137153

Ashari, F., Ilham, Nugroho, E., Baraku, R., Yanda, I., & Liwardana, R. (2023). Analysis of Elbow, Silhouette, Davies-Bouldin, Calinski-Harabasz, and Rand-Index Evaluation on K-Means Algorithm for Classifying Flood-Affected Areas in Jakarta. Journal of Applied Informatics and Computing. 7, 89-97. https://doi.org/10.30871/jaic.v7i1.4947

Awalina, E. F L., & Rahayu. W. I. (2023). Optimalisasi Strategi Pemasaran dengan Segmentasi Pelanggan Menggunakan Penerapan K-Means Clustering pada Transaksi Online Retail. Jurnal Mahasiswa Teknik Informatika (JATI). 13(2). https://doi.org/10.34010/jati.v13i2

Bagul. N., Surana. P.P., Berad. P., Khachane. C. (2021). Retail Customer Churn Analysis Using RFM Model and K-Means Clustering. International Journal of Engineering Research & Technology. 10(3). Retrieved from https://www.ijert.org/retail-customer-churn-analysis-using-rfm-model-and-k-means-clustering

Christy. A. J., Umamakeswari. A., Priyatharsini. L., and Neyaa. A. (2021). RFM ranking-an effective ap-proach to customer segmentation. Journal of King Saud University-Computer and Information Sci-ences. 33 10, https://doi.org/10.1016/j.jksuci.2018.09.004

Firmansyah, H., Widyana, S. (2021). Pengaruh Customer Relationship Management (CRM) Terhadap Kepuasan Pelanggan Produk Sepatu Converse. Jurnal Bisnis dan Pemasaran. 11(1). Retrieved from https://ejurnal.ulbi.ac.id/index.php/promark/article/view/1321

Hayati, S., Suroso, A., Suliyanto, & Elfan Kaukab, M., (2020). Customer satisfaction as a mediation between micro banking image, customer relationship and customer loyalty. Management Science Letters, 10(11), 2561–2570. http://dx.doi.org/10.5267/j.msl.2020.3.039

Hidayanti. R., Zubair. A., Pratama. A. H., Indana. L. (2021). Silhouette Coefficient Analysis in 6 Measuring Distances of K-Means Clustering. Indonesia Journal on Computer and Information Technology. Techno.COM, 20(2), http://dx.doi.org/10.33633/tc.v20i2.4556

Ikotun, A. M., Ezugwu, A. E., Abualigah, L., Abuhaija, B., Heming, J., & Abualigah, L. (2023). K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data. Information Sciences, 622, 178-210. https://doi.org/10.1016/j.cosrev.2024.100621

Khan. I. K., Daud. H. B., Zinuddin. N. B., Sokkalingam. R., Farooq. M., Baig. M. E., Ayub. G., Zafar. M. (2024). Dermining the optimal number of clusters by Enhanced Gap Statistic in K-mean algorithm. Egyptian Informatics Journal. 27(1) https://doi.org/10.1016/j.eij.2024.100504

Kong. W., Wang. Y., Dai. H., Zhao. L., Wang. C. (2021). Analysis of Energy Consumption Structure Based on K-Means Clustering Algorithm. E3S Web Conference. 267, 01054. https://doi.org/10.1051/e3sconf/202126701054

Kristanti.B. T., Junaidi. A., Mandyartha. E. P. (2024). Implementasi K-Means Clustering Dalam Segmentasi pelanggan Berdasarkan Usia, Pendapatan, dan Model RFM (studi kasus: Lantikya Store Jomabang). Jurnal Informatika dan Teknik Elektro (JITET). 12(3). http://dx.doi.org/10.23960/jitet.v12i3.4677

Maskanah. I., Primajaya. A., Rizal. A. (2020). Segmentasi Pelanggan Toko Purnama dengan Algoritma K-Means dan Model RFM untuk Perancangan Strategi Pemasaran. Jurnal Inovtek Polbeng. 5(2). https://doi.org/10.35314/isi.v5i2.1443

Nikmatun, I. A. (2019). Implementasi Data Mining Untuk Klasifikasi Masa Studi Mahasiswa Menggunakan Algoritma K-Nearest Neighbor. Jurnal SIMETRIS. 10(2). https://doi.org/10.24176/simet.v10i2.2882

Nisa. K., Heikal. J. (2022). Strategi Sa Pelanggan Manja Beauty Skincare Dengan Menggunakan Analisa Rfm Model. Jurnal Mahasiswa Teknik Informatika (JATI). 6(1). https://doi.org/10.36040/jati.v6i1.4558

Rocha. L. M., Zela. M. A .C ., Torres. N. I. V., Medina. G. S. (2021). Analogy of the Application of Clustering and K-Means Tehniques for the Approxinimation of Values of Human Development Indicators. International Journal of Advanced Computer Science and Applications. 12(9). http://dx.doi.org/10.14569/IJACSA.2021.0120959

Sarkar. M., Puja. A. R., Chowdhury. F. R. (2024). Optimizing Marketing Strategies with RFM Method and K-Means Clustering Based AI Customer Segmentation Analysis. Journal of Business and Management Studies 6(2):54-60. http://dx.doi.org/10.32996/jbms.2024.6.2.5

Shirole. R., Salokhe. L., Jadhav. S. (2021). Customer Segmentation using RFM Model and K-Means Clustering. International Journal of Scientific Research in Science and Technology. 8(3). https://doi.org/10.32628/IJSRST2183118

Vysala. A., Gomes. D. J. (2020). Evaluating and Validating Cluster Results. Computer Science & Information Technology (CS & IT). 37-47. https://doi.org/10.5121/csit.2020.100904

Author Biographies

Edwin Setiawan, Universitas Diponegoro

Bayu Surarso, Universitas Diponegoro

Dinar Mutiara Kusumo Nugraheni, Universitas Diponegoro

License

Copyright (c) 2025 Edwin Setiawan, Bayu Surarso, Dinar Mutiara Kusumo Nugraheni

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).