An Optimum Design Sapphire-Fiber Bragg Grating for High-Temperature Sensing

Authors

DOI:

10.29303/jppipa.v8i3.1663

Published:

2022-07-31

Issue:

Vol. 8 No. 3 (2022): July

Keywords:

Sapphire FBG, High-Temperature, Sensor

Research Articles

Downloads

How to Cite

Irawan, D. ., Ramadhan, K., & Azhar, A. (2022). An Optimum Design Sapphire-Fiber Bragg Grating for High-Temperature Sensing . Jurnal Penelitian Pendidikan IPA, 8(3), 1361–1367. https://doi.org/10.29303/jppipa.v8i3.1663

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

Fiber Bragg grating (FBG) sensors have limitations in measuring high and extreme temperatures because in general FBG sensors are made of silica fiber, which at high temperatures can interfere with the mechanical performance of the materials. In this paper, we propose an S-FBG (Sapphire Fiber Bragg Grating) sensor which is resistant to extreme environmental influences and high temperatures. By developing S-FBG to measure high temperatures, it is found that S-FBG has high sensitivity, every 10C change is obtained and the Bragg wavelength shifts as far as 30.24 nm, this result is greatly influenced by the thermo-optic coefficient, and the coefficient of expansion-thermal. The design also evaluates the Gaussian apodization profile to improve sensor accuracy in monitoring temperature.

References

Afroozeh, A. (2021). Highly Sensitive FBG-Based Sensor for Temperature Measurement Operating in Optical Fiber. Plasmonics, 16(6), 1973–1982. https://doi.org/10.1007/s11468-021-01457-y

Chai, Q., & Luo, Y. (2019). Review on fiber-optic sensing in health monitoring of power grids. Optical Engineering, 58(07), 1. https://doi.org/10.1117/1.oe.58.7.072007

da Silva Marques, R., Prado, A. R., da Costa Antunes, P. F., de Brito André, P. S., Ribeiro, M. R. N., Frizera-Neto, A., & Pontes, M. J. (2015). Corrosion resistant FBG-based quasi-distributed sensor for crude oil tank dynamic temperature profile monitoring. Sensors (Switzerland), 15(12), 30693–30703. https://doi.org/10.3390/s151229811

De Villiers, G. J., Treurnicht, J., & Dobson, R. T. (2012). In-core high temperature measurement using fiber-Bragg gratings for nuclear reactors. Applied Thermal Engineering, 38, 143–150. https://doi.org/10.1016/j.applthermaleng.2012.01.024

Elsmann, T. (2013). Faser-Bragg-Gitter für die Hochtemperaturanwendung.

Elsmann, T., Lorenz, A., Yazd, N. S., Habisreuther, T., Dellith, J., Schwuchow, A., Bierlich, J., Schuster, K., Rothhardt, M., Kido, L., & Bartelt, H. (2014). High temperature sensing with fiber Bragg gratings in sapphire-derived all-glass optical fibers. Optics Express, 22(22), 26825. https://doi.org/10.1364/oe.22.026825

Guo, Q., Jia, Z., Pan, X., Liu, S., Tian, Z., Zheng, Z., Chen, C., Qin, G., & Yu, Y. (2021). Sapphire-derived fiber bragg gratings for high temperature sensing. Crystals, 11(8). https://doi.org/10.3390/cryst11080946

Habisreuther, T., Elsmann, T., Pan, Z., Graf, A., Willsch, R., & Schmidt, M. A. (2015). Sapphire fiber Bragg gratings for high temperature and dynamic temperature diagnostics. Applied Thermal Engineering, 91, 860–865. https://doi.org/10.1016/j.applthermaleng.2015.08.096

Irawan, D. ; Azhar, A. ; Ramadhan, K. (2022). High-Performance Compensation Dispersion with Apodization Chirped Fiber Bragg Grating for Fiber Communication System. Jurnal Penelitian Pendidikan IPA (JPPIPA), 8(2), 992–999. https://jppipa.unram.ac.id/index.php/jppipa/article/view/1521

Irawan, D., Saktioto, & Ali, J. (2010). Linear and triangle order of NX3 optical directional couplers: Variation coupling coefficient. Proceedings of SPIE - The International Society for Optical Engineering, 7781. https://doi.org/10.1117/12.862573

Irawan, D., Saktioto, Ali, J., & Defrianto. (2011). Breakdown voltage effect on coupling ratio fusion fiber coupling. Physics Procedia, 19. https://doi.org/10.1016/j.phpro.2011.06.195

Irawan, Dedi, Saktioto, Ali, J., Fadhali, M., & Erwin. (2012). Estimation of coupling parameters for auto-motorized fabrication of fused fiber coupler. Microwave and Optical Technology Letters, 54(8), 1932–1935. https://doi.org/10.1002/mop.26937

Kumar, J., Singh, G., Saxena, M. K., Prakash, O., Dixit, S. K., & Nakhe, S. V. (2021). Development and Studies on FBG Temperature Sensor for Applications in Nuclear Fuel Cycle Facilities. IEEE Sensors Journal, 21(6), 7613–7619. https://doi.org/10.1109/JSEN.2020.3046244

Li, J. W., Chan, M. H., Yang, Z. Q., Manie, Y. C., & Peng, P. C. (2021). Robust Remote Sensing FBG Sensor System Using Bidirectional-EDFA Techniques. 1–2. https://doi.org/10.1109/icce-tw52618.2021.9602898

Lindner, M., Bernard, D., Heilmeier, F., Jakobi, M., Volk, W., Koch, A. W., & Roths, J. (2020). Transition from purely elastic to viscoelastic behavior of silica optical fibers at high temperatures characterized using regenerated Bragg gratings. Optics Express, 28(5), 7323. https://doi.org/10.1364/oe.384402

Ramadhan, khaikal ., Toto, S. (2021). Integrasi Chirping dan Apodisasi Bahan TOPAS untuk Peningkatan Kinerja Sensor Serat Kisi Bragg. Komunikasi Fisika Indonesia, 18(2), 111–123.

Ramadhan, K. (2020). Dispersi multi-layer pada inti serat optik moda tunggal. Seminar Nasional Fisika Universitas Riau V (SNFUR-5), 1–5.

Sahm, W. H. (1982). An Introduction To Fiber Optics. Plant Engineering (Barrington, Illinois), 36(8), 71–74. https://doi.org/10.1117/3.1445658.ch1

Saktioto, T., Ramadhan, K., Soerbakti, Y., Irawan, D., & Okfalisa. (2021a). Apodization sensor performance for TOPAS fiber Bragg grating. Telkomnika, 19(6). https://doi.org/http://dx.doi.org/10.12928/telkomnika.v19i6.21669

Saktioto, T., Ramadhan, K., Soerbakti, Y., Irawan, D., & Okfalisa. (2021b). Integration of chirping and apodization of Topas materials for improving the performance of fiber Bragg grating sensors. Journal of Physics: Conference Series, 2049(1). https://doi.org/10.1088/1742-6596/2049/1/012001

Wang, B., Niu, Y., Qin, X., Yin, Y., & Ding, M. (2021). Review of high temperature measurement technology based on sapphire optical fiber. Measurement: Journal of the International Measurement Confederation, 184. https://doi.org/10.1016/j.measurement.2021.109868

Yang, S., Homa, D., Heyl, H., Theis, L., Beach, J., Dudding, B., Acord, G., Taylor, D., Pickrell, G., & Wang, A. (2019). Application of sapphire-fiber-bragg-grating-based multi-point temperature sensor in boilers at a commercial power plant. Sensors (Switzerland), 19(14). https://doi.org/10.3390/s19143211

Zhong, X., Yang, M., Shi, L., Chai, L., & Ye, S. (2021). Distributed temperature sensing technology for oil and gas wells based on weak reflection fiber bragg grating. 2021 3rd International Conference on Intelligent Control, Measurement and Signal Processing and Intelligent Oil Field, ICMSP 2021, 312–316. https://doi.org/10.1109/ICMSP53480.2021.9513422

Afroozeh, A. (2021). Highly Sensitive FBG-Based Sensor for Temperature Measurement Operating in Optical Fiber. Plasmonics, 16(6), 1973–1982. https://doi.org/10.1007/s11468-021-01457-y

Chai, Q., & Luo, Y. (2019). Review on fiber-optic sensing in health monitoring of power grids. Optical Engineering, 58(07), 1. https://doi.org/10.1117/1.oe.58.7.072007

da Silva Marques, R., Prado, A. R., da Costa Antunes, P. F., de Brito André, P. S., Ribeiro, M. R. N., Frizera-Neto, A., & Pontes, M. J. (2015). Corrosion resistant FBG-based quasi-distributed sensor for crude oil tank dynamic temperature profile monitoring. Sensors (Switzerland), 15(12), 30693–30703. https://doi.org/10.3390/s151229811

De Villiers, G. J., Treurnicht, J., & Dobson, R. T. (2012). In-core high temperature measurement using fiber-Bragg gratings for nuclear reactors. Applied Thermal Engineering, 38, 143–150. https://doi.org/10.1016/j.applthermaleng.2012.01.024

Elsmann, T. (2013). Faser-Bragg-Gitter für die Hochtemperaturanwendung.

Elsmann, T., Lorenz, A., Yazd, N. S., Habisreuther, T., Dellith, J., Schwuchow, A., Bierlich, J., Schuster, K., Rothhardt, M., Kido, L., & Bartelt, H. (2014). High temperature sensing with fiber Bragg gratings in sapphire-derived all-glass optical fibers. Optics Express, 22(22), 26825. https://doi.org/10.1364/oe.22.026825

Guo, Q., Jia, Z., Pan, X., Liu, S., Tian, Z., Zheng, Z., Chen, C., Qin, G., & Yu, Y. (2021). Sapphire-derived fiber bragg gratings for high temperature sensing. Crystals, 11(8). https://doi.org/10.3390/cryst11080946

Habisreuther, T., Elsmann, T., Pan, Z., Graf, A., Willsch, R., & Schmidt, M. A. (2015). Sapphire fiber Bragg gratings for high temperature and dynamic temperature diagnostics. Applied Thermal Engineering, 91, 860–865. https://doi.org/10.1016/j.applthermaleng.2015.08.096

Irawan, D. ; Azhar, A. ; Ramadhan, K. (2022). High-Performance Compensation Dispersion with Apodization Chirped Fiber Bragg Grating for Fiber Communication System. Jurnal Penelitian Pendidikan IPA (JPPIPA), 8(2), 992–999. https://jppipa.unram.ac.id/index.php/jppipa/article/view/1521

Irawan, D., Saktioto, & Ali, J. (2010). Linear and triangle order of NX3 optical directional couplers: Variation coupling coefficient. Proceedings of SPIE - The International Society for Optical Engineering, 7781. https://doi.org/10.1117/12.862573

Irawan, D., Saktioto, Ali, J., & Defrianto. (2011). Breakdown voltage effect on coupling ratio fusion fiber coupling. Physics Procedia, 19. https://doi.org/10.1016/j.phpro.2011.06.195

Irawan, Dedi, Saktioto, Ali, J., Fadhali, M., & Erwin. (2012). Estimation of coupling parameters for auto-motorized fabrication of fused fiber coupler. Microwave and Optical Technology Letters, 54(8), 1932–1935. https://doi.org/10.1002/mop.26937

Kumar, J., Singh, G., Saxena, M. K., Prakash, O., Dixit, S. K., & Nakhe, S. V. (2021). Development and Studies on FBG Temperature Sensor for Applications in Nuclear Fuel Cycle Facilities. IEEE Sensors Journal, 21(6), 7613–7619. https://doi.org/10.1109/JSEN.2020.3046244

Li, J. W., Chan, M. H., Yang, Z. Q., Manie, Y. C., & Peng, P. C. (2021). Robust Remote Sensing FBG Sensor System Using Bidirectional-EDFA Techniques. 1–2. https://doi.org/10.1109/icce-tw52618.2021.9602898

Lindner, M., Bernard, D., Heilmeier, F., Jakobi, M., Volk, W., Koch, A. W., & Roths, J. (2020). Transition from purely elastic to viscoelastic behavior of silica optical fibers at high temperatures characterized using regenerated Bragg gratings. Optics Express, 28(5), 7323. https://doi.org/10.1364/oe.384402

Ramadhan, khaikal ., Toto, S. (2021). Integrasi Chirping dan Apodisasi Bahan TOPAS untuk Peningkatan Kinerja Sensor Serat Kisi Bragg. Komunikasi Fisika Indonesia, 18(2), 111–123.

Ramadhan, K. (2020). Dispersi multi-layer pada inti serat optik moda tunggal. Seminar Nasional Fisika Universitas Riau V (SNFUR-5), 1–5.

Sahm, W. H. (1982). AN INTRODUCTION TO FIBER OPTICS. Plant Engineering (Barrington, Illinois), 36(8), 71–74. https://doi.org/10.1117/3.1445658.ch1

Saktioto, T., Ramadhan, K., Soerbakti, Y., Irawan, D., & Okfalisa. (2021a). Apodization sensor performance for TOPAS fiber Bragg grating. Telkomnika, 19(6). https://doi.org/http://dx.doi.org/10.12928/telkomnika.v19i6.21669

Saktioto, T., Ramadhan, K., Soerbakti, Y., Irawan, D., & Okfalisa. (2021b). Integration of chirping and apodization of Topas materials for improving the performance of fiber Bragg grating sensors. Journal of Physics: Conference Series, 2049(1). https://doi.org/10.1088/1742-6596/2049/1/012001

Wang, B., Niu, Y., Qin, X., Yin, Y., & Ding, M. (2021). Review of high temperature measurement technology based on sapphire optical fiber. Measurement: Journal of the International Measurement Confederation, 184. https://doi.org/10.1016/j.measurement.2021.109868

Yang, S., Homa, D., Heyl, H., Theis, L., Beach, J., Dudding, B., Acord, G., Taylor, D., Pickrell, G., & Wang, A. (2019). Application of sapphire-fiber-bragg-grating-based multi-point temperature sensor in boilers at a commercial power plant. Sensors (Switzerland), 19(14). https://doi.org/10.3390/s19143211

Zhong, X., Yang, M., Shi, L., Chai, L., & Ye, S. (2021). Distributed temperature sensing technology for oil and gas wells based on weak reflection fiber bragg grating. 2021 3rd International Conference on Intelligent Control, Measurement and Signal Processing and Intelligent Oil Field, ICMSP 2021, 312–316. https://doi.org/10.1109/ICMSP53480.2021.9513422

Author Biographies

Dedi Irawan, Universitas Riau

Khaikal Ramadhan, Universitas Riau

Azhar Azhar, Universitas Riau

License

Copyright (c) 2022 Khaikal Ramadhan, Dedi Irawan, Azhar Azhar

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).