Identification of Reactive Species Produced by Surfaces Dielectric Barrier Discharge Nonthermal Plasma with Gas Sources Variation (Air, N2, O2) to Kill Bacteria
DOI:
10.29303/jppipa.v8i4.2167Published:
2022-10-31Issue:
Vol. 8 No. 4 (2022): OctoberKeywords:
Nonthermal plasma, SDBD, ROS, RNS, E. coli, air, oxygen, nitrogenResearch Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
Non-thermal plasma is one of the new techniques that is being focused on in the medical world, one of which is used for sterilization because non-thermal plasma is known to have a bactericidal effect. Reactive species produced by non-thermal plasma are antimicrobial. One factor affecting plasma species' reactive composition is the gas source used. Therefore, this study aimed to determine the effect of reactive species produced from non-thermal plasma generation of SDBD using different gas sources, namely free air, oxygen, and nitrogen, in treating Escherichia Coli bacteria. The gas flow used is 1 liter/minute. Reactive species produced by plasma were characterized using Optical Emission Spectrometry (OES). SDBD Non-thermal plasma treatment for Escherichia Coli bacteria samples was repeated three times for each treatment, and then the Anova test was performed. The results of this study indicate that bacterial death at the decontamination level depends on the composition of the gas used during treatment. Plasma using an O2 gas source has a more effective inactivation ability, namely 6 x 107 CFU/ml, compared to the control, which is 409 x 107 CFU/ml. At the same time, the treatment results with free air and nitrogen gas sources were 6.33 x 107 CFU/ml and 41.67 x 107 CFU/ml. These results indicate that the composition of ROS and RNS influences bacterial inactivation, where ROS is more effective in inactivating bacteria than RNS
References
Adhikari, B. C., Lamichhane, P., Lim, J. S., Nguyen, L. N., & Choi, E. H. (2021). Generation of reactive species by naturally sucked air in the Ar plasma jet. Results in Physics, 30, 104863. https://doi.org/10.1016/j.rinp.2021.104863
Ahn, H. J., Kim, K. Il, Hoan, N. N., Kim, C. H., Moon, E., Choi, K. S., Yang, S. S., & Lee, J. S. (2014). Targeting cancer cells with reactive oxygen and nitrogen species generated by atmospheric-pressure air plasma. PLoS ONE, 9(1). https://doi.org/10.1371/journal.pone.0086173
Akter, M., Yadav, D. K., Ki, S. H., Choi, E. H., & Han, I. (2020). Inactivation of infectious bacteria using nonthermal biocompatible plasma cabinet sterilizer. International Journal of Molecular Sciences, 21(21), 1–14. https://doi.org/10.3390/ijms21218321
Amalda, E. C., Alhamidah, F., Oktanella, Y., & Khuzain, M. (2020). Kajian Artikel: Potensi Plasma Non Termal Sebagai Kandidat Terapi Mastitis Subklinis. VITEK : Bidang Kedokteran Hewan, 10(November), 1–9. https://doi.org/10.30742/jv.v10i0.41
Belgacem, Z. Ben, Charpentier, E., Le-bras, F., Maho, T., Robert, E., Pouvesle, J., Polidor, F., Gangloff, C., Boudifa, M., & Gelle, M. (2017). Innovative non-thermal plasma disinfection process inside sealed bags : Assessment of bactericidal and sporicidal effectiveness in regard to current sterilization norms. PLoS ONE, 12(6), 1–18.
Carré, G., Charpentier, E., Audonnet, S., Terryn, C., Boudifa, M., Doliwa, C., Belgacem, Z. Ben, Gangloff, S. C., & Gelle, M. P. (2018). Contribution of fluorescence techniques in determining the efficiency of the non-thermal plasma treatment. Frontiers in Microbiology, 9(SEP), 1–12. https://doi.org/10.3389/fmicb.2018.02171
Dezest, M., Bulteau, A. L., Quinton, D., Chavatte, L., Bechec, M. Le, Cambus, J. P., Arbault, S., Nègre-Salvayre, A., Cleâment, F., & Cousty, S. (2017). Oxidative modification and electrochemical inactivation of Escherichia coli upon cold atmospheric pressure plasma exposure. PLoS ONE, 12(3), 1–18. https://doi.org/10.1371/journal.pone.0173618
Dubey, S. K., Parab, S., Alexander, A., Agrawal, M., Achalla, V. P. K., Pal, U. N., Pandey, M. M., & Kesharwani, P. (2022). Cold atmospheric plasma therapy in wound healing. Process Biochemistry, 112(June 2021), 112–123. https://doi.org/10.1016/j.procbio.2021.11.017
Fallon, M., Boyle, M., Kennedy, S., Daniels, S., & Humphreys, H. (2020). Cold atmospheric plasma, the removal of blood from steel and its effect on staphylococcal biofilm formation. A pilot study. Clinical Plasma Medicine, 19–20(March), 100104. https://doi.org/10.1016/j.cpme.2020.100104
Feng, T., & Wang, J. (2020). Oxidative stress tolerance and antioxidant capacity of lactic acid bacteria as probiotic: a systematic review. Gut Microbes, 12(1). https://doi.org/10.1080/19490976.2020.1801944
Gaur, N., Kurita, H., Oh, J. S., Miyachika, S., Ito, M., Mizuno, A., Cowin, A. J., Allinson, S., Short, R. D., & Szili, E. J. (2021). On cold atmospheric-pressure plasma jet induced DNA damage in cells. Journal of Physics D: Applied Physics, 54(3). https://doi.org/10.1088/1361-6463/abb8ab
Hati, S., Mandal, S., Vij, S., Minz, P. S., Basu, S., Khetra, Y., Yadav, D., & Dahiya, M. (2012). Nonthermal plasma technology and its potential applications against foodborne microorganisms. Journal of Food Processing and Preservation, 36(6), 518–524. https://doi.org/10.1111/j.1745-4549.2011.00619.x
Hosseini, S. I., Mohsenimehr, S., Hadian, J., & Ghorbanpour, M. (2018). Physico-chemical induced modification of seed germination and early development in artichoke ( Cynara scolymus L .) using low energy plasma technology Physico-chemical induced modification of seed germination and early development in. January. https://doi.org/10.1063/1.5016037
Kaushik, N., Mitra, S., Baek, E. J., Nguyen, L. N., Bhartiya, P., Kim, J. H., Choi, E. H., & Kaushik, N. K. (2022). The inactivation and destruction of viruses by reactive oxygen species generated through physical and cold atmospheric plasma techniques: Current status and perspectives. Journal of Advanced Research. https://doi.org/10.1016/j.jare.2022.03.002
Lopes, B. B., De Paula Leite Kraft, M. B., Rehder, J., Batista, F. R. X., & Puzzi, M. B. (2013). The interactions between non-thermal atmospheric pressure plasma and ex-vivo dermal fibroblasts. Procedia Engineering, 59, 92–100. https://doi.org/10.1016/j.proeng.2013.05.098
Lotfy, K. (2020). The impact of the carrier gas composition of non-thermal atmospheric pressure plasma jet for bacteria sterilization. AIP Advances, 10(1). https://doi.org/10.1063/1.5099923
Lotfy, K., Al-Qahtani, S. M., Al-Harbi, N. A., El-Absy, K. M., Bu Shulaybi, F. A., Alali, S. A., & Mashtoly, T. A. (2022). Influence of Non-Thermal Plasma on the Quality and Nutritional Content of Palm Dates. Applied Sciences, 12(17), 8587. https://doi.org/10.3390/app12178587
Martines, E., Zuin, M., Cavazzana, R., Gazza, E., Serianni, G., Spagnolo, S., Spolaore, M., Leonardi, A., Deligianni, V., Brun, P., Aragona, M., Castagliuolo, I., & Brun, P. (2009). A novel plasma source for sterilization of living tissues. New Journal of Physics, 11, 8–16. https://doi.org/10.1088/1367-2630/11/11/115014
Mastanaiah, N., Banerjee, P., Johnson, J. A., & Roy, S. (2013). Examining the role of ozone in surface plasma sterilization using dielectric barrier discharge (DBD) plasma. Plasma Processes and Polymers, 10(12), 1120–1133. https://doi.org/10.1002/ppap.201300108
Misra, N. N., Keener, K. M., Bourke, P., & Cullen, P. J. (2015). Generation of In-Package Cold Plasma and Efficacy Assessment Using Methylene Blue. Plasma Chemistry and Plasma Processing, 35(6), 1043–1056. https://doi.org/10.1007/s11090-015-9638-5
Naz, M. Y., Shukrullah, S., Rehman, S. U., Khan, Y., Al-Arainy, A. A., & Meer, R. (2021). Optical characterization of non-thermal plasma jet energy carriers for effective catalytic processing of industrial wastewaters. Scientific Reports, 11(1), 1–13. https://doi.org/10.1038/s41598-021-82019-4
Nupangtha, W., Kuensaen, C., Ngamjarurojana, A., Chomdej, S., & Boonyawan, D. (2021). A surface dielectric barrier discharge non-thermal plasma to induce cell death in colorectal cancer cells. AIP Advances, 11(7), 15–17. https://doi.org/10.1063/5.0053501
Patinglag, L., Melling, L. M., Whitehead, K. A., Sawtell, D., Iles, A., & Shaw, K. J. (2021). Non-thermal plasma-based inactivation of bacteria in water using a microfluidic reactor. Water Research, 201(February), 117321. https://doi.org/10.1016/j.watres.2021.117321
Pourbagher, R., Abbaspour-Fard, M. H., Sohbatzadeh, F., & Rohani, A. (2021). In vivo antibacterial effect of non-thermal atmospheric plasma on pseudomonas tolaasii, a causative agent of Agaricus bisporus blotch disease. Food Control, 130(March). https://doi.org/10.1016/j.foodcont.2021.108319
Rezaei, F., Abbasi-firouzjah, M., & Shokri, B. (2014). Investigation of antibacterial and wettability behaviours of plasma-modified PMMA films. 085401. https://doi.org/10.1088/0022-3727/47/8/085401
Sarangapani, C., Misra, N. N., Milosavljevic, V., Bourke, P., O’Regan, F., & Cullen, P. J. (2016). Pesticide degradation in water using atmospheric air cold plasma. Journal of Water Process Engineering, 9, 225–232. https://doi.org/10.1016/j.jwpe.2016.01.003
Wang, Y., Cheng, C., Gao, P., Li, S., Shen, J., Lan, Y., Yu, Y., & Chu, P. K. (2017). Cold atmospheric-pressure air plasma treatment of C6 glioma cells : effects of reactive oxygen species in the medium produced by the plasma on cell death. June 2018. https://doi.org/10.1088/2058-6272/19/2/025503
Wiegand, C., Beier, O., Horn, K., Pfuch, A., Tölke, T., Hipler, U. C., & Schimanski, A. (2013). Antimicrobial impact of cold atmospheric pressure plasma on medical critical yeasts and bacteria cultures. Skin Pharmacology and Physiology, 27(1), 25–35. https://doi.org/10.1159/000351353
Xu, D., Liu, D., Wang, B., Chen, C., Chen, Z., Li, D., Yang, Y., Chen, H., & Kong, M. G. (2015). In situ OH generation from O2-and H2O2 plays a critical role in plasma-induced cell death. PLoS ONE, 10(6), 1–14. https://doi.org/10.1371/journal.pone.0128205
Zhang, Q., Liang, Y., Feng, H., Ma, R., Tian, Y., Zhang, J., & Fang, J. (2013). A study of oxidative stress induced by non-thermal plasma-activated water for bacterial damage. Applied Physics Letters, 102(20). https://doi.org/10.1063/1.4807133
Zhou, R., Zhang, X., Bi, Z., Zong, Z., Niu, J., Song, Y., Liu, D., & Yang, S. (2015). Inactivation of Escherichia coli cells in aqueous solution by atmospheric-pressure N2, He, air, and O2 microplasmas. Applied and Environmental Microbiology, 81(15), 5257–5265. https://doi.org/10.1128/AEM.01287-15
Author Biographies
Renaldo Apriandi Kasa, Universitas Brawijaya
Unggul Pundjung Juswono, Universitas Brawijaya
Dionysius Joseph Djoko Herry Santjojo, Universitas Brawijaya
License
Copyright (c) 2022 Renaldo kasa
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).