Deformation Analysis of 2012 Mw8.6 Indian Ocean Earthquake Based on GPS Data in Preseismic, Coseismic, and Postseismic Phases

Authors

Marzuki Marzuki , Zul Ikram , Vira Friska

DOI:

10.29303/jppipa.v8i6.2419

Published:

2022-12-28

Issue:

Vol. 8 No. 6 (2022): December

Keywords:

SuGAr; Sumatra, surface deformation, 2012 Mw8.6 earthquake

Research Articles

Downloads

How to Cite

Marzuki, M., Ikram, Z., & Friska, V. . (2022). Deformation Analysis of 2012 Mw8.6 Indian Ocean Earthquake Based on GPS Data in Preseismic, Coseismic, and Postseismic Phases. Jurnal Penelitian Pendidikan IPA, 8(6), 2785–2792. https://doi.org/10.29303/jppipa.v8i6.2419

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

The earthquake was one of the biggest natural disasters in Sumatra and dramatically affected this region and the surrounding area. Determination of surface deformation due to the earthquake is essential for disaster mitigation. The Global Navigation Satellite System (GNSS) is a commonly used method for determining surface deformation due to earthquakes. This study analyzes surface deformation during the preseismic, coseismic, and postseismic phases due to the 2012 Mw8.6 Indian Ocean earthquake. The study used Global Positioning System (GPS) data from the Sumatran GPS Array (SuGAr) network. The most significant horizontal deformation was observed at the LEWK station, which was 280.554 mm towards the northeast and experienced a subsidence of 40.830 mm in vertical deformation. Horizontal deformation is still felt by 22.453 mm to the northeast and vertical deformation of 8.810 mm (uplift) at stations that are farther (580 km) from the earthquake's epicenter. However, in the observation period of 60 days (postseismic phase), stations closer to the epicenter are still experiencing a postseismic phase. In contrast, stations far from the epicenter show that the postseismic phase is almost complete. In the preseismic phase, all stations experience almost the same horizontal deformation, ranging from 2.210 mm-3.639 mm, but with a different direction of movement, which may be caused by previous intense earthquake activity, which is still releasing energy (postseismic phase). On the other hand, the vertical deformation during the preseismic phase generally experiences an uplift except at the LEWK station. The results of this study can be additional information for earthquake mitigation in the Sumatra region

References

Alif, S. M., Fattah, E. I., & Kholil, M. (2020). Geodetic slip rate and locking depth of east Semangko Fault derived from GPS measurement. Geodesy and Geodynamics, 11(3), 222–228. https://doi.org/10.1016/j.geog.2020.04.002

Arisa, D., Setiadi, B., & Priyanto, W. S. (2021). Pre-and Coseismic Analysis of the Mw7.6 Padang Earthquake 2009 from Geodetic Approach. IOP Conference Series: Earth and Environmental Science, 789(1). https://doi.org/10.1088/1755-1315/789/1/012069

Catherine, J. K., & Gahalaut, V. K. (2007). A glimpse of earthquake cycle in the Sumatra region. Current Science, 92(1), 114–118. Retrieved from https://www.jstor.org/stable/24096834

Duputel, Z., Kanamori, H., Tsai, V. C., Rivera, L., Meng, L., Ampuero, J. P., & Stock, J. M. (2012). The 2012 Sumatra great earthquake sequence. Earth and Planetary Science Letters, 351–352, 247–257. https://doi.org/10.1016/j.epsl.2012.07.017

Govers, R., Furlong, K. P., van de Wiel, L., Herman, M. W., & Broerse, T. (2018). The Geodetic Signature of the Earthquake Cycle at Subduction Zones: Model Constraints on the Deep Processes. Reviews of Geophysics, 56(1), 6–49. https://doi.org/10.1002/2017RG000586

Gunawan, E., Maulida, P., Meilano, I., Irsyam, M., & Efendi, J. (2016). Analysis of coseismic fault slip models of the 2012 Indian ocean earthquake: Importance of GPS data for crustal deformation studies. Acta Geophysica, 64(6), 2136–2150. https://doi.org/10.1515/acgeo-2016-0106

Hamzah, L., Puspito, N., & Imamura, F. (2000). Tsunami Catalog Indonesia.pdf. In Journal of Natural Disaster Science (Vol. 22, Issue 1, pp. 25–43). Retrieved from https://www.jstage.jst.go.jp/article/jnds/22/1/22_1_25/_pdf

Herring, T. A., King, R. W., Floyd, M. A., & McClusky, S. C. (2015). GLOBK reference manual, version 10.6. Massachusetts Institute of Technology: Cambridge, MA, USA.

Johnston, G., Riddell, A., & Hausler, G. (2017). The International GNSS Service. Springer Handbooks, 967–982. https://doi.org/10.1007/978-3-319-42928-1_33

Khawiendratama, B. P. (2016). Analisa Perubahan Kecepatan Pergeseran Titik Akibat Gempa Menggunakan Data SuGar (Sumatran GPS Array). Jurnal Teknik ITS, 5(2). https://doi.org/10.12962/j23373539.v5i2.17595

Lori Agung, S., Shandy, Y., Tri, U., & Fitri, A. (2018). Aktifitas Gempa Bumi Sumatera Barat Berdasarkan Sumber dari Januari hingga Juni 2018. Stasiun Geofisika Kelas I Silaing Bawah.

Marzuki, Ramadhan, R., Friska, V., Primadona, H., Ramadhan, R. A., Monica, F., Arisa, D., & Namigo, E. L. (2022). Dynamics of West Coast of Sumatra and Island Arc Mentawai during the Coseismic Phase of the Mentawai Mw7.8 25 October 2010 Earthquake. Journal of Physics: Conference Series, 2309(1). https://doi.org/10.1088/1742-6596/2309/1/012030

Maulida, P., Meilano, I., Gunawan, E., & Efendi, J. (2016). Analysis of 2012 M8.6 Indian Ocean earthquake coseismic slip model based on GPS data. AIP Conference Proceedings, 1730. https://doi.org/10.1063/1.4947396

McCaffrey, R. (1992). Oblique plate convergence, slip vectors, and forearc deformation. Journal of Geophysical Research, 97(B6), 8905–8915. https://doi.org/10.1029/92JB00483

McGuire, J. J., & Beroza, G. C. (2012). A rogue earthquake off Sumatra. Science, 336(6085), 1118–1119. https://doi.org/10.1126/science.1223983

McLoughlin, I. V., Wong, K. J., & Tan, S. L. (2011). Data collection, communications and processing in the Sumatran GPS array (SuGAr). Proceedings of the World Congress on Engineering 2011, WCE 2011, 2, 1732–1736.

Meng, L., Ampuero, J. P., Stock, J., Duputel, Z., Luo, Y., & Tsai, V. C. (2012). Earthquake in a maze: Compressional rupture branching during the 2012 Mw 8.6 Sumatra earthquake. Science, 337(6095), 724–726. https://doi.org/10.1126/science.1224030

Mulyana, B. (2006). Extension Tektonik Selat Sunda. Bulletin of Scientific Contribution, 6(2), 137–145.

Natawidjaja, D. H., Sieh, K., Galetzka, J., Suwargadi, B. W., Cheng, H., Edwards, R. L., & Chlieh, M. (2007). Interseismic deformation above the Sunda Megathrust recorded in coral microatolls of the Mentawai islands, West Sumatra. Journal of Geophysical Research: Solid Earth, 112(2), 1–27. https://doi.org/10.1029/2006JB004450

Pollitz, F. F., Stein, R. S., Sevilgen, V., & Bürgmann, R. (2012). The 11 April 2012 east Indian Ocean earthquake triggered large aftershocks worldwide. Nature, 490(7419), 250–253. https://doi.org/10.1038/nature11504

Pratama, C., Ito, T., Tabei, T., Kimata, F., Gunawan, E., Ohta, Y., Yamashina, T., Nurdin, I., Sugiyanto, D., Muksin, U., Ismail, N., & Meilano, I. (2018). Evaluation of the 2012 Indian Ocean coseismic fault model in 3-D heterogeneous structure based on vertical and horizontal GNSS observation. AIP Conference Proceedings, 1987. https://doi.org/10.1063/1.5047296

Prawirodirdjo, L., McCaffrey, R., Chadwell, C. D., Bock, Y., & Subarya, C. (2010). Geodetic observations of an earthquake cycle at the Sumatra subduction zone: Role of interseismic strain segmentation. Journal of Geophysical Research: Solid Earth, 115(3), 1–15. https://doi.org/10.1029/2008JB006139

Sajagat, M. J., Awaluddin, M., & Yuwono, B. D. (2016). Hitungan Kecepatan Pergerakan Stasiun Sugar Akibat Proses Interseismik Gempa Mentawai 2007. Jurnal Geodesi Undip, 5(4), 196–206. Retrieved from https://ejournal3.undip.ac.id/index.php/geodesi/article/view/13938

Satriano, C., Kiraly, E., Bernard, P., & Vilotte, J. P. (2012). The 2012 Mw 8.6 Sumatra earthquake: Evidence of westward sequential seismic ruptures associated to the reactivation of a N-S ocean fabric. Geophysical Research Letters, 39(15), 1–6. https://doi.org/10.1029/2012GL052387

Tong, X., Sandwell, D. T., & Schmidt, D. A. (2018). Surface Creep Rate and Moment Accumulation Rate Along the Aceh Segment of the Sumatran Fault From L-band ALOS-1/PALSAR-1 Observations. Geophysical Research Letters, 45(8), 3404–3412. https://doi.org/10.1002/2017GL076723

Wei, S., Helmberger, D., & Avouac, J. P. (2013). Modeling the 2012 Wharton basin earthquakes off-Sumatra: Complete lithospheric failure. Journal of Geophysical Research: Solid Earth, 118(7), 3592–3609. https://doi.org/10.1002/jgrb.50267

Xu, K., Gan, W., & Wu, J. (2019). Pre-seismic deformation detected from regional GNSS observation network: A case study of the 2013 Lushan, eastern Tibetan Plateau (China), Ms 7.0 earthquake. Journal of Asian Earth Sciences, 180(May), 103859. https://doi.org/10.1016/j.jseaes.2019.05.004

Yadav, R. K., Kundu, B., Gahalaut, K., Catherine, J., Gahalaut, V. K., Ambikapthy, A., & Naidu, M. S. (2013). Coseismic offsets due to the 11 April 2012 Indian Ocean earthquakes (M w 8.6 and 8.2) derived from GPS measurements. Geophysical Research Letters, 40(13), 3389–3393. https://doi.org/10.1002/grl.50601

Yue, H., Lay, T., & Koper, K. D. (2012). En échelon and orthogonal fault ruptures of the 11 April 2012 great intraplate earthquakes. Nature, 490(7419), 245–249. https://doi.org/10.1038/nature11492

Author Biographies

Marzuki Marzuki, Department of Physics, Universitas Andalas

Zul Ikram, Department of Physics, Universitas Andalas, Limau Manis, Padang 25163, Indonesa.

Vira Friska, Department of Physics, Universitas Andalas, Limau Manis, Padang 25163, Indonesa.

License

Copyright (c) 2022 Marzuki Marzuki, Zul Ikram, Vira Friska

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).