Overview of Extraction Methods for Extracting Seaweed and its Applications


Yeanchon Henry Dulanlebit , Hernani Hernani






Vol. 9 No. 2 (2023): February


Extraction, Gel, Hydrocolloid, Seaweed

Research Articles


How to Cite

Dulanlebit, Y. H. ., & Hernani, H. (2023). Overview of Extraction Methods for Extracting Seaweed and its Applications . Jurnal Penelitian Pendidikan IPA, 9(2), 817–824. https://doi.org/10.29303/jppipa.v9i2.3053


Download data is not yet available.


Metrics Loading ...


Seaweed is a carbohydrate polymer of alginate, agar, and carrageenan which can be extracted and purified as hydrocolloids. Each carbohydrate has different physicochemical properties and hydrocolloids can form gels when dispersed in water. To achieve targeted hydrocolloids according to specific purposes and functions, conventional extraction methods, and several green extraction methods for extracting seaweed have been proposed and discussed. The conventional extraction method is in the form of solvent extraction (SLE), while the green extraction includes: microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE), supercritical fluid extraction (SFE), pressurized solvent extraction (PSE), and reactive extrusion which automatically selectively presented as a promising method for extracting hydrocolloids in seaweed. These methods have been applied by taking into account the recovery rate, time, volume, temperature, pH, ratio, and type of solvent, as well as the type of method. This study discusses extraction methods that can extract bioactive compounds from seaweed with high yields and are economical and environmentally friendly


Ale, M. T., & Meyer, A. S. (2013). Fucoidans from brown seaweeds: An update on structures, extraction techniques and use of enzymes as tools for structural elucidation. Rsc Advances, 3(22), 8131-8141. Retrieved from https://pubs.rsc.org/en/content/articlehtml/2013/ra/c3ra23373a

Ale, M. T., Mikkelsen, J. D., & Meyer, A. S. (2011). Important determinants for fucoidan bioactivity: A critical review of structure-function relations and extraction methods for fucose-containing sulfated polysaccharides from brown seaweeds. Marine drugs, 9(10), 2106-2130. https://doi.org/10.3390/md9102106

Arioli, T., Mattner, S. W., & Winberg, P. C. (2015). Applications of seaweed extracts in Australian agriculture: past, present and future. Journal of applied phycology, 27, 2007-2015. https://doi.org/10.1007/s10811-015-0574-9

Benslima, A., Sellimi, S., Hamdi, M., Nasri, R., Jridi, M., Cot, D., ... & Zouari, N. (2021). The brown seaweed Cystoseira schiffneri as a source of sodium alginate: Chemical and structural characterization, and antioxidant activities. Food Bioscience, 40, 100873. https://doi.org/10.1016/j.fbio.2020.100873

Bertagnolli, C., Da Silva, M. G. C., & Guibal, E. (2014). Chromium biosorption using the residue of alginate extraction from Sargassum filipendula. Chemical Engineering Journal, 237, 362-371. https://doi.org/10.1016/j.cej.2013.10.024

Budhiraja, R.P., (2004). Separation Chemistry. New Age International Publisher, New Delhi.

Chee, S. Y., Wong, P. K., & Wong, C. L. (2011). Extraction and characterisation of alginate from brown seaweeds (Fucales, Phaeophyceae) collected from Port Dickson, Peninsular Malaysia. Journal of Applied Phycology, 23, 191-196. https://doi.org/10.1007/s10811-010-9533-7

Chen, Z., Gu, G., Li, S., Wang, C., & Zhu, R. (2018). The effect of seaweed glue in the separation of copper–molybdenum sulphide ore by flotation. Minerals, 8(2), 41. https://doi.org/10.3390/min8020041

Chew, K. W., Show, P. L., Yap, Y. J., Juan, J. C., Phang, S. M., Ling, T. C., & Chang, J. S. (2018). Sonication and grinding pre-treatments on Gelidium amansii seaweed for the extraction and characterization of agarose. Frontiers of environmental science & engineering, 12, 1-7. https://doi.org/10.1007/s11783-018-1040-0

Christian G.D. (2004). Analytical Chemistry, Library of Congress Cataloging in Publication Data. New York : John Wiley &amp

Cotas, J., Leandro, A., Monteiro, P., Pacheco, D., Figueirinha, A., Gonçalves, A. M., ... & Pereira, L. (2020). Seaweed phenolics: From extraction to applications. Marine drugs, 18(8), 384. https://doi.org/10.3390/md18080384

Din, S. S., Chew, K. W., Chang, Y. K., Show, P. L., Phang, S. M., & Juan, J. C. (2019). Extraction of agar from Eucheuma cottonii and Gelidium amansii seaweeds with sonication pretreatment using autoclaving method. Journal of Oceanology and Limnology, 37(3), 871-880. https://doi.org/10.1007/s00343-019-8145-6

Godlewska, K., Michalak, I., Tuhy, Å., & Chojnacka, K. (2016). Plant growth biostimulants based on different methods of seaweed extraction with water. BioMed research international, 2016. https://doi.org/10.1155/2016/5973760

Godlewska, K., Michalak, I., Tuhy, Å., & Chojnacka, K. (2017). The influence of pH of extracting water on the composition of seaweed extracts and their beneficial properties on Lepidium sativum. BioMed research international, 2017. https://doi.org/10.1155/2017/7248634

Grosso, C., Valentão, P., Ferreres, F., & Andrade, P. B. (2015). Alternative and efficient extraction methods for marine-derived compounds. Marine Drugs, 13(5), 3182-3230. https://doi.org/10.3390/md13053182

Gullón, B., Gagaoua, M., Barba, F. J., Gullón, P., Zhang, W., & Lorenzo, J. M. (2020). Seaweeds as promising resource of bioactive compounds: Overview of novel extraction strategies and design of tailored meat products. Trends in Food Science & Technology, 100, 1-18. https://doi.org/10.1016/j.tifs.2020.03.039

Han, C., Chen, X., Xie, W., Zhu, Z., Liu, C., Chen, F., & Shen, Y. (2010). Determination of hexabromocyclododecane diastereoisomers in Sargassum fusiforme and comparison of the extraction efficiency of ultrasonication, microwaveâ€assisted extraction, Soxhlet extraction and pressurised liquid extraction. Journal of separation science, 33(21), 3319-3325. https://doi.org/10.1002/jssc.201000558

Heng, M. Y., Tan, S. N., Yong, J. W. H., & Ong, E. S. (2013). Emerging green technologies for the chemical standardization of botanicals and herbal preparations. TrAC Trends in Analytical Chemistry, 50, 1-10. https://doi.org/10.1016/j.trac.2013.03.012

Hernández-Herrera, R. M., Santacruz-Ruvalcaba, F., Ruiz-López, M. A., Norrie, J., & Hernández-Carmona, G. (2014). Effect of liquid seaweed extracts on growth of tomato seedlings (Solanum lycopersicum L.). Journal of applied phycology, 26, 619-628. https://doi.org/10.1007/s10811-013-0078-4

Hernández-Herrera, R. M., Santacruz-Ruvalcaba, F., Zañudo-Hernández, J., & Hernández-Carmona, G. (2016). Activity of seaweed extracts and polysaccharide-enriched extracts from Ulva lactuca and Padina gymnospora as growth promoters of tomato and mung bean plants. Journal of applied phycology, 28, 2549-2560. https://doi.org/10.1007/s10811-015-0781-4

Jacobsen, C., Sørensen, A. D. M., Holdt, S. L., Akoh, C. C., & Hermund, D. B. (2019). Source, extraction, characterization, and applications of novel antioxidants from seaweed. Annual Review of Food Science and Technology, 10, 541-568. https://doi.org/10.1146/annurev-food-032818-121401

Jang, S. S., Shirai, Y., Uchida, M., & Wakisaka, M. (2012). Production of mono sugar from acid hydrolysis of seaweed. African Journal of Biotechnology, 11(8), 1953-1963. https://doi.org/10.5897/AJB10.1681

Jönsson, M., Allahgholi, L., Sardari, R. R., Hreggviðsson, G. O., & Nordberg Karlsson, E. (2020). Extraction and modification of macroalgal polysaccharides for current and next-generation applications. Molecules, 25(4), 930. https://doi.org/10.3390/molecules25040930

Khalil, H. A., Bhat, A. H., & Yusra, A. I. (2012). Green composites from sustainable cellulose nanofibrils: A review. Carbohydrate polymers, 87(2), 963-979. https://doi.org/10.1016/j.carbpol.2011.08.078

Khalil, H. P. S., Tye, Y. Y., Saurabh, C. K., Leh, C. P., Lai, T. K., Chong, E. W. N., ... & Syakir, M. I. (2017). Biodegradable polymer films from seaweed polysaccharides: A review on cellulose as a reinforcement material. Express Polymer Letters, 11(4). https://doi.org/10.3144/expresspolymlett.2017.26

Kocira, S., Szparaga, A., Findura, P., & Treder, K. (2020). Modification of yield and fiber fractions biosynthesis in Phaseolus vulgaris L. by treatment with biostimulants containing amino acids and seaweed extract. Agronomy, 10(9), 1338. https://doi.org/10.3390/agronomy10091338

Kocira, S., Szparaga, A., Kuboń, M., Czerwińska, E., & Piskier, T. (2019). Morphological and biochemical responses of Glycine max (L.) Merr. to the use of seaweed extract. Agronomy, 9(2), 93. https://doi.org/10.3390/agronomy9020093

Kristanto, F. P., Machmudah, S., Winardi, S., Wahyudiono, W., & Goto, M. (2021). Yield and Extraction Rate Analysis of Phytochemical Compounds from Eucheuma cottonii, Ganoderma lucidum, and Gracilaria sp. using Subcritical Water Extraction. ASEAN Journal of Chemical Engineering, 21(1), 27-37. https://doi.org/10.22146/ajche.60513

Lim, C., Yusoff, S., Ng, C. G., Lim, P. E., & Ching, Y. C. (2021). Bioplastic made from seaweed polysaccharides with green production methods. Journal of Environmental Chemical Engineering, 9(5), 105895. https://doi.org/10.1016/j.jece.2021.105895

Mahdavi, M., Namvar, F., Ahmad, M. B., & Mohamad, R. (2013). Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules, 18(5), 5954-5964. https://doi.org/10.3390/molecules18055954

Manns, D., Deutschle, A. L., Saake, B., & Meyer, A. S. (2014). Methodology for quantitative determination of the carbohydrate composition of brown seaweeds (Laminariaceae). Rsc Advances, 4(49), 25736-25746. https://doi.org 10.1039/C4RA03537B

Raj, T. S., Nishanthi, P., Graff, K. H., & Suji, H. A. (2018). Seaweed extract as a biostimulant and a pathogen controlling agent in plants. International Journal of Tropical Agriculture, 36(3), 563-580. Retrieved from https://www.cabdirect.org/cabdirect/abstract/20209900168

Rajauria, G., & Abu-Ghannam, N. (2013). Isolation and partial characterization of bioactive fucoxanthin from Himanthalia elongata brown seaweed: A TLC-based approach. International Journal of Analytical Chemistry, 2013. https://doi.org/10.1155/2013/802573

Rhein-Knudsen, N., Ale, M. T., & Meyer, A. S. (2015). Seaweed hydrocolloid production: an update on enzyme assisted extraction and modification technologies. Marine drugs, 13(6), 3340-3359. https://doi.org/10.3390/md13063340

Rodriguez-Jasso, R. M., Mussatto, S. I., Pastrana, L., Aguilar, C. N., & Teixeira, J. A. (2011). Microwave-assisted extraction of sulfated polysaccharides (fucoidan) from brown seaweed. Carbohydrate Polymers, 86(3), 1137-1144. https://doi.org/10.1016/j.carbpol.2011.06.006

Sanagi, M. M., Loh, S. H., Wan Ibrahim, W. N., Pourmand, N., Salisu, A., Wan Ibrahim, W. A., & Ali, I. (2016). Agaroseâ€and alginateâ€based biopolymers for sample preparation: Excellent green extraction tools for this century. Journal of separation science, 39(6), 1152-1159. https://doi.org/10.1002/jssc.201501207

Singh, C. B., Xavier, K. M., Deshmukhe, G., Gudipati, V., Shitole, S. S., & Balange, A. K. (2018). Fortification of extruded product with brown seaweed (Sargassum tenerrimum) and its process optimization by response surface methodology. Waste and biomass valorization, 9, 755-764. https://doi.org/10.1007/s12649-017-9831-2

Sterner, M., & Gröndahl, F. (2021). Extraction of laminarin from Saccharina latissima seaweed using cross-flow filtration. Journal of Applied Phycology, 33(3), 1825-1844. https://doi.org/10.1007/s10811-021-02398-z

Subramani, T., & Sindhu, S. (2012). Batch study experiments and column analysis for finding out a suitable biosorbent for the removal of heavy metals from electroplating industry effluent. Int. J. Eng. Res. App, 2(4), 172-184. Retrieved from http://www.ijera.com/papers/Vol2_issue4/Z24172184.pdf

Tatke, P., & Jaiswal, Y. (2011). An overview of microwave assisted extraction and its applications in herbal drug research. Research journal of medicinal plant, 5(1), 21-31. Retrieved from https://scialert.net/abstract/?doi=rjmp.2011.21.31

Thilagavathi, R., Prithiba, A., & Rajalakshmi, R. (2019). Performance Evaluation of Sargassum Polycystum C. Agardh Seaweed Extract as Green Inhibitor for Acid Corrosion of Mild Steel. Oriental Journal of Chemistry, 35(1), 241. https://doi.org/10.13005/ojc/350129

Thodhal Yoganandham, S., Raguraman, V., Muniswamy, G., Sathyamoorthy, G., Rajan Renuka, R., Chidambaram, J., ... & Santha Ravindranath, R. R. (2019). Mineral and trace metal concentrations in seaweeds by microwave-assisted digestion method followed by quadrupole inductively coupled plasma mass spectrometry. Biological Trace Element Research, 187, 579-585. https://doi.org/10.1007/s12011-018-1397-8

Torres, M. D., Flórez-Fernández, N., & Dominguez, H. (2021). Ultrasound-assisted water extraction of mastocarpus stellatus carrageenan with adequate mechanical and antiproliferative properties. Marine Drugs, 19(5), 280. https://doi.org/10.3390/md19050280

Trica, B., Delattre, C., Gros, F., Ursu, A. V., Dobre, T., Djelveh, G., ... & Oancea, F. (2019). Extraction and characterization of alginate from an edible brown seaweed (Cystoseira barbata) harvested in the Romanian Black Sea. Marine drugs, 17(7), 405. https://doi.org/10.3390/md17070405

Vijayan, S. R., Santhiyagu, P., Singamuthu, M., Kumari Ahila, N., Jayaraman, R., & Ethiraj, K. (2014). Synthesis and characterization of silver and gold nanoparticles using aqueous extract of seaweed, Turbinaria conoides, and their antimicrofouling activity. The Scientific World Journal, 2014. https://doi.org/10.1155/2014/938272

Vuai, S. A. (2022). Characterization of agar extracted from Gracilaria species collected along Tanzanian coast. Heliyon, 8(2), e09002. https://doi.org/10.1016/j.heliyon.2022.e09002

Webber, V., Carvalho, S. M. D., Ogliari, P. J., Hayashi, L., & Barreto, P. L. M. (2012). Optimization of the extraction of carrageenan from Kappaphycus alvarezii using response surface methodology. Food science and Technology, 32, 812-818. https://doi.org/10.1590/S0101-20612012005000111

Wolle, M. M., & Conklin, S. D. (2018). Speciation analysis of arsenic in seafood and seaweed: part I—evaluation and optimization of methods. Analytical and bioanalytical chemistry, 410, 5675-5687. https://doi.org/10.1007/s00216-018-0906-0

Xia, M., Liu, C., Gao, L., & Lu, Y. (2019). One-step preparative separation of phytosterols from edible brown seaweed Sargassum horneri by high-speed countercurrent chromatography. Marine Drugs, 17(12), 691. https://doi.org/10.3390/md17120691

Yew, Y. P., Shameli, K., Miyake, M., Kuwano, N., Bt Ahmad Khairudin, N. B., Bt Mohamad, S. E., & Lee, K. X. (2016). Green synthesis of magnetite (Fe3O4) nanoparticles using seaweed (Kappaphycus alvarezii) extract. Nanoscale research letters, 11(1), 1-7. https://doi.org/10.1186/s11671-016-1498-2

Author Biographies

Yeanchon Henry Dulanlebit, Doctorate Program of Science Education, Universitas Pendidikan Indonesia.

Hernani Hernani, Doctorate Program of Science Education, Universitas Pendidikan Indonesia


Copyright (c) 2023 Yeanchon Henry Dulanlebit, Hernani Hernani

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).