The Influence of Physico-Chemical and Bioactivators for Composting of Traditional Market Vegetable Waste
DOI:
10.29303/jppipa.v9i4.3238Published:
2023-04-30Issue:
Vol. 9 No. 4 (2023): AprilKeywords:
Bio activators, Biomass, Organic fertilizer, Physico-chemical, Vegetable wasteResearch Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
Reprocessing organic vegetable waste from conventional markets can have beneficial effects, such as producing bioenergy, reducing the need for inorganic fertilizers, and minimizing the volume of contaminants in the environment. Organic material composting can help lower greenhouse gas emissions and generate income. Physical-chemical factors like temperature, pH, particle size, moisture content, aeration, and CN ratio were used to regulate the breakdown process. Trichoderma harzianum, an effective microorganism, and Trichoderma harzianum helped the degradation process function. High-quality compost is produced by converting organic matter in a bioreactor system, where the solid substrate replenishes nutrients. Based on the optimum point of the decomposition procedure, the analytical findings were achieved. After that the material had been homogenized and aerated, this process took place (oxygen). When the temperature is increased, the active and ripening stages take place, which triggers the breakdown process. The ideal temperature for composting, between 30-45 °C, was reached. The temperature steadily drops when the majority of the material has broken down, and the composting process is complete.
References
Ali, G., Nitivattananon, V., Abbas, S., & Sabir, M. (2012). Green waste to biogas: Renewable energy possibilities for Thailand’s green markets. Renewable and Sustainable Energy Reviews, 16(7), 5423–5429. https://doi.org/10.1016/j.rser.2012.05.021
Beck-Friis, B., Smårs, S., Jönsson, H., Eklind, Y., & Kirchmann, H. (2003). Composting of Source-Separated Household Organics At Different Oxygen Levels: Gaining an Understanding of the Emission Dynamics. Compost Science & Utilization, 11(1),41–50. https://doi.org/10.1080/1065657X.2003.10702108
Bhave, P. P., & Kulkarni, B. N. (2019). Effect of active and passive aeration on composting of household biodegradable wastes: a decentralized approach. International Journal of Recycling of Organic Waste in Agriculture,8,335–344. https://doi.org/10.1007/s40093-019-00306-7
Chaerul, M., & Dewi, T. P. (2020). Analisis Timbulan Sampah Pasar Tradisional (Studi Kasus: Pasar Ujungberung, Kota Bandung). Al-Ard: Jurnal Teknik Lingkungan, 5(2), 98–106. https://doi.org/10.29080/alard.v5i2.861
Che Jusoh, M. L., Abd Manaf, L., & Abdul Latiff, P. (2013). Composting of rice straw with effective microorganisms (EM) and its influence on compost quality. Iranian Journal of Environmental Health Science and Engineering, 10(17). https://doi.org/10.1186/1735-2746-10-17
Chen, Z., Zhang, S., Wen, Q., & Zheng, J. (2015). Effect of aeration rate on composting of penicillin mycelial dreg. Journal of Environmental Sciences, 37, 172–178. https://doi.org/10.1016/j.jes.2015.03.020
Chowdhury, A. K. M. M. B., Konstantinou, F., Damati, A., Akratos, C. S., Vlastos, D., Tekerlekopoulou, A. G., & Vayenas, D. V. (2015). Is physicochemical evaluation enough to characterize olive mill waste compost as soil amendment? The case of genotoxicity and cytotoxicity evaluation. Journal of CleanerProduction,93,94–102. https://doi.org/10.1016/j.jclepro.2015.01.029
Chowdhury, A. K. M. M. B., Michailides, M. K., Akratos, C. S., Tekerlekopoulou, A. G., Pavlou, S., & Vayenas, D. V. (2014). Composting of three phase olive mill solid waste using different bulking agents. International Biodeterioration and Biodegradation,91,66–73. https://doi.org/10.1016/j.ibiod.2014.03.012
Contreras-Cornejo, H. A., MacÃas-RodrÃguez, L., Cortés-Penagos, C., & López-Bucio, J. (2009). Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in arabidopsis. Plant Physiology, 149(3),1579–1592. https://doi.org/10.1104/pp.108.130369
Daniel Said-Pullicino. (2007). Changes in the chemical characteristics of water-extractable organic matter during composting and their influence on compost stability and. Bioresource Technology, 98(9), 1822–1831. https://doi.org/10.1016/j.biortech.2006.06.018
Graves. (2000). Part 637 Environmental Engineering National Engineering Handbook. In Mary R. Mattinson (Ed.), National Engineering Handbook (pp.1–71). Retrieved from https://directives.sc.egov.usda.gov/OpenNonWebContent.aspx?content=28910.wba
Guebel, D. V., Nudel, B. C., & Giulietti, A. M. (1991). A simple and rapid micro-Kjeldahl method for total nitrogen analysis. Biotechnology Techniques, 5(6), 427–430. https://doi.org/10.1007/BF00155487
Guo, R., Li, G., Jiang, T., Schuchardt, F., Chen, T., Zhao, Y., & Shen, Y. (2012). Effect of aeration rate, C/N ratio and moisture content on the stability and maturity of compost. Bioresource Technology, 112, 171–178. https://doi.org/10.1016/j.biortech.2012.02.099
Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species - Opportunistic, avirulent plant symbionts. In Nature Reviews Microbiology (Vol. 2, Issue 1, pp. 43–56). https://doi.org/10.1038/nrmicro797
Hidayat, Y. A., Kiranamahsa, S., & Zamal, M. A. (2019). A study of plastic waste management effectiveness in Indonesia industries. AIMS Energy,7(3),350–370. https://doi.org/10.3934/ENERGY.2019.3.350
Hu, W., Zheng, G., Fang, D., Cui, C., Liang, J., & Zhou, L. (2015). Bioleached sludge composting drastically reducing ammonia volatilization as well as decreasing bulking agent dosage and improving compost quality: A case study. Waste Management,44,55–62. https://doi.org/10.1016/j.wasman.2015.07.023
Iqbal, M. K., Nadeem, A., Sherazi, F., & Khan, R. A. (2015). Optimization of process parameters for kitchen waste composting by response surface methodology. International Journal of Environmental Science and Technology, 12(5), 1759–1768. https://doi.org/10.1007/s13762-014-0543-x
Juárez-Robles, B., de la Rosa-Gómez, I., Mañon-Salas, M. del C., Hernández-Berriel, M. del C., Vaca-PaulÃn, R., & Lugo-de la Fuente, J. (2017). Quality and time of biosolid compost when varying ratios and weight of substrates. Revista Chapingo Serie Ciencias Forestales y Del Ambiente, 23(3), 401–410. https://doi.org/10.5154/r.rchscfa.2016.12.065
Karwal, M., & Dutta, D. (2021). Composting: Phases and Factors Responsible for Efficient and Improved Composting. Agriculture & Food, 3(01), 85–90. https://doi.org/10.13140/RG.2.2.13546.95689
Kazemi, K., Zhang, B., Lye, L. M., Cai, Q., & Cao, T. (2016). Design of experiment (DOE) based screening of factors affecting municipal solid waste (MSW) composting. Waste Management, 58, 107–117. https://doi.org/10.1016/j.wasman.2016.08.029
Khater, E. S. G. (2015). Some Physical and Chemical Properties of Compost. International Journal of WasteResources,05(01). https://doi.org/10.4172/2252-5211.1000172
Kulikowska, D. (2016). Kinetics of organic matter removal and humification progress during sewage sludge composting. Waste Management, 49, 196–203. https://doi.org/10.1016/j.wasman.2016.01.005
Lazcano, C., Gómez-Brandón, M., & DomÃnguez, J. (2008). Comparison of the effectiveness of composting and vermicomposting for the biological stabilization of cattle manure. Chemosphere,72(7),1013–1019. https://doi.org/10.1016/j.chemosphere.2008.04.016
Lei Wang. (2015). Methyl Jasmonate Primed Defense Responses Against Penicillium expansum in Sweet Cherry Fruit. Plant Molecular Biology, 33, 1464–1471.
Makan, A., Assobhei, O., & Mountadar, M. (2013). Effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco. Iranian Journal of Environmental Health Science and Engineering, 10(3). https://doi.org/10.1186/1735-2746-10-3
Manzoni, S., Trofymow, J. A., Jackson, R. B., & Porporato, A. (2010). Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. In Ecological Monographs (Vol. 80, Issue 1). https://doi.org/10.1890/09-0179.1
Marlina, E. T., Badruzzaman, D. Z., Harlia, E., Hidayati, Y. A., & Susilawati, I. (2020). Microbial Population Dynamics and Fiber Reduction In The Initial Decomposition Of Beef Cattle Waste Composting. Ziraa’ah, 45(1), 94–102. Retrieved from https://ojs.uniska-bjm.ac.id/index.php/ziraah/article/viewFile/2657/2009
Mega Charisma, A., Sri Rahayu, Y., Jurusan Biologi, I., Matematika dan Ilmu Pengetahuan Alam, F., & Acvrida Mega Charisma. (2012). Pengaruh Kombinasi Kompos Trichoderma dan Mikoriza Vesikular Arbuskular (MVA) terhadap Pertumbuhan Tanaman Kedelai (Glycine max (L.) Merill) pada Media Tanam Tanah Kapur. LenteraBio, 1(3), 111–116. Retrieved from https://garuda.kemdikbud.go.id/documents/detail/1538011
Mona M. El-Shazly, & El-Shazly, M. M. (2020). Role Of Trichoderma Spp. In Improving Compost Properties. Plant Archives, 20(2), 8353–8362. Retrieved from http://plantarchives.org/20-2/8353-8362%20(7095).pdf
Muhammad Aleem Sarwar, Bot, P. J., & Anjum, S. A. (2010). Appraisal of Pressmud and Inorganic and anorganic Fertilizer Sugarcane and Sugarcane Quality effect of Nitrogen on Growth and Yield of Sugarcane. Pak. J. Bot, 42(2), 1361–1367. Retrieved from https://rb.gy/3tw5v
N. Gamze Turan. (2007). The effects of natural zeolite on salinity level of poultry liter compost. Bioresource Technology, 99(7), 2097–2101. https://doi.org/10.1016/j.biortech.2007.11.061
Noor Mohammad. (2012). Effective composting of oil palm industrial waste by filamentous fungi: A review. Resources, Conservation and Recycling, 58, 69–78. https://doi.org/10.1016/j.resconrec.2011.10.009
Nugraha, A., Sutjahjo, S. H., & Amin, A. A. (2018). Analisis Persepsi dan Partisipasi Masyarakat terhadap Pengelolaan Sampah Rumah Tangga di Jakarta Selatan. Jurnal Pengelolaan Sumberdaya Alam Dan Lingkungan (Journal of Natural Resources and Environmental Management), 8(1), 7–14. https://doi.org/10.29244/jpsl.8.1.7-14
Onwosi, C. O., Igbokwe, V. C., Odimba, J. N., Eke, I. E., Nwankwoala, M. O., Iroh, I. N., & Ezeogu, L. I. (2017). Composting technology in waste stabilization: On the methods, challenges and future prospects. Journal of Environmental Management,190,140–157. https://doi.org/10.1016/j.jenvman.2016.12.051
Otoma, S., Hoang, H., Hong, H., Miyazaki, I., & Diaz, R. (2013). A survey on municipal solid waste and residents’ awareness in Da Nang city, Vietnam. Journal of Material Cycles and Waste Management, 15(2), 187–194. https://doi.org/10.1007/s10163-012-0109-2
Palaniveloo, K., Amran, M. A., Norhashim, N. A., Mohamad-Fauzi, N., Peng-Hui, F., Hui-Wen, L., Kai-Lin, Y., Jiale, L., Chian-Yee, M. G., Jing-Yi, L., Gunasekaran, B., & Razak, S. A. (2020). Food waste composting and microbial community structure profiling. In Processes (Vol. 8, Issue 6, pp. 1–30).MDPIAG. https://doi.org/10.3390/pr8060723
Pant, A. P., Radovich, T. J. K., Hue, N. V., & Paull, R. E. (2012). Biochemical properties of compost tea associated with compost quality and effects on pak choi growth. Scientia Horticulturae, 148, 138–146. https://doi.org/10.1016/j.scienta.2012.09.019
Petric, I., Helić, A., & Avdić, E. A. (2012). Evolution of process parameters and determination of kinetics for co-composting of organic fraction of municipal solid waste with poultry manure. Bioresource Technology,117,107–116. https://doi.org/10.1016/j.biortech.2012.04.046
Priyambada, I. B., & Wardana, I. W. (2018). Fast decomposition of food waste to produce mature and stable compost. Sustinere: Journal of Environment and Sustainability, 2(3), 156–167. https://doi.org/10.22515/sustinere.jes.v2i3.47
Raut, M., Prince Wiliam, S., Bhattacharyya, J., Chakrabarti, T., & Devotta, S. (2008). Microbial dynamics and enzyme activities during rapid composting of municipal solid waste – A compost maturity analysis perspective. Bioresource Technology,99(14),6512–6519. https://doi.org/10.1016/j.biortech.2007.11.030
Ravindran, B., Nguyen, D. D., Chaudhary, D. K., Chang, S. W., Kim, J., Lee, S. R., ... & Lee, J. (2019). Influence of biochar on physico-chemical and microbial community during swine manure composting process. Journal of environmental management, 232, 592-599. https://doi.org/10.1016/j.jenvman.2018.11.119
Sepwanti, C., Rahmawati, M., & Kesumawati, E. (2016). Pengaruh Varietas dan Dosis Kompos yanf diperkaya Trichoderma harzianum Terhadap pertumbuhan dan hasil Tanaman Cabai Merah (Capsicum annuum L.). In Jurnal Kawista (Vol. 1, Issue 1). Retrieved from https://jurnal.usk.ac.id/agrotek/article/view/3243
Sholahudin, U. (2015). Pasar Modern dan Hancurnya Hak Sosial-Ekonomi Pedagang Tradisional (Studi Kasus Menjamurnya Pasar Modern dan Dampaknya Terhadap Hak Berusaha Pedagang Tradisional Di Kota Surabaya. Jurnal Politika , 1(1).
Sudharsan Varma, V., & Kalamdhad, A. S. (2015). Evolution of chemical and biological characterization during thermophilic composting of vegetable waste using rotary drum composter. International Journal of Environmental Science and Technology,12(6),2015–2024. https://doi.org/10.1007/s13762-014-0582-3
Sundberg, C., & Jönsson, H. (2008). Higher pH and faster decomposition in biowaste composting by increased aeration. Waste Management, 28(3), 518–526. https://doi.org/10.1016/j.wasman.2007.01.011
Yang Jiang. (2015). Rapid production of organic fertilizer by dynamic high-temperature z. Bioresource Technology, 197, 7–14. https://doi.org/10.1016/j.biortech.2015.08.053
Yanqoritha, N., Kuswandi, & Sulhatun, S. (2022). Evaluation of Kinetic Parameters of Nitrification Process in Biofilter System to Efluent Liquid Waste of Tofu Industry. Jurnal Penelitian PendidikanIPA,8(6),2744–2751. https://doi.org/10.29303/jppipa.v8i6.2453
Zhang, H., Li, G., Gu, J., Wang, G., Li, Y., & Zhang, D. (2016). Influence of aeration on volatile sulfur compounds (VSCs) and NH3 emissions during aerobic composting of kitchen waste. Waste Management,58,369–375. https://doi.org/10.1016/j.wasman.2016.08.022
Zhao, X. lan, Li, B. qiong, Ni, J. pai, Xie, D. ti, NiI, J., & Xie, D. ti. (2016). Effect of four crop straws on transformation of organic matter during sewage sludge composting. Journal of Integrative Agriculture,15(1),232–240. https://doi.org/10.1016/S2095-3119(14)60954-0
Author Biography
Nyimas Yanqoritha, Universitas Prima Indonesia
License
Copyright (c) 2023 Nyimas Yanqoritha
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).