Mathematics Behind the Heisenberg Uncertainty Principle

Authors

DOI:

10.29303/jppipa.v9i4.3545

Published:

2023-04-30

Issue:

Vol. 9 No. 4 (2023): April

Keywords:

Fourier series, Heisenberg uncertainty, Integral transform, Wave packet

Research Articles

Downloads

How to Cite

Wulandari, D. (2023). Mathematics Behind the Heisenberg Uncertainty Principle. Jurnal Penelitian Pendidikan IPA, 9(4), 2223–2228. https://doi.org/10.29303/jppipa.v9i4.3545

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

Most physics books do not reveal clearly how the Heisenberg uncertainty principle was derived. This uncertainty comes from the consequence of the wave-particle duality of matter giving statement that position and momentum cannot be measured in the same time. This article tries to reveal mathematics background behind the expression the Heisenberg uncertainty using supported mathematics background such as Fourier transform, Fourier transform integral, the probability of Gaussian distribution and it ends up with the expression of wave function which describe the localized particle giving relation Heisenberg uncertainty principle.

References

Amico, M., & Dittel, C. (2020). Simulation of wave-particle duality in multipath interferometers on a quantum computer. Physical Review A, 102(3), 032605. https://doi.org/10.1103/PhysRevA.102.032605

Atalay, B., Jönsson, P., & Brage, T. (2023). Extended relativistic multiconfiguration calculations of energy levels and transition properties in singly ionized tin. Journal of Quantitative Spectroscopy and Radiative Transfer, 294(108392). https://doi.org/10.1016/j.jqsrt.2022.108392.

Bercioux, D., van den Berg, T. L., Ferraro, D., Rech, J., Jonckheere, T., & Martin, T. (2020). Wave-particle duality of electrons with spin-momentum locking. The European Physical Journal Plus, 135(10), 811. https://doi.org/10.1140/epjp/s13360-020-00837-3

Carnio, E. G., Breuer, H.-P., & Buchleitner, A. (2019). Wave–Particle Duality in Complex Quantum Systems. The Journal of Physical Chemistry Letters, 10(9), 2121–2129. https://doi.org/10.1021/acs.jpclett.9b00676

Carosso, A. (2022). Quantization: History and problems. Studies in History and Philosophy of Science, 96, 35–50. https://doi.org/10.1016/j.shpsa.2022.09.001.

Dalimier, E., & Oks, E. (2014). Analytical theory of charge-exchange-caused dips in spectral lines of He-like ions from laser-produced plasmas. Journal of Physics B: Atomic, Molecular and Optical Physics, 47(10), 105001. https://doi.org/10.1088/0953-4075/47/10/105001

Dani, A. T. R., & Adrianingsih, N. Y. (2021). Pemodelan Regresi Nonparametrik dengan Estimator Spline Truncated vs Deret Fourier. Jambura Journal of Mathematics, 3(1), 26–36. https://doi.org/10.34312/jjom.v3i1.7713

Dolce, D. (2023). Is time a cyclic dimension? Canonical quantization implicit in classical cyclic dynamics. Annals of Physics, 448, 169182. https://doi.org/10.1016/j.aop.2022.169182

Firman, H. (2019). Kepastian Dan Ketidakpastian Dalam Sains. Jurnal Filsafat Indonesia, 2(1), 33. https://doi.org/10.23887/jfi.v2i1.17549

Kaneyasu, T., Hikosaka, Y., Fujimoto, M., Iwayama, H., & Katoh, M. E. (2021). Electron Wave Packet Interference in Atomic Inner-Shell Excitation. Physical Review Letters, 126(11), 113202. https://doi.org/10.1103/PhysRevLett.126.113202

Kusuma, D. T. (2020). Fast Fourier Transform (FFT) Dalam Transformasi Sinyal Frekuensi Suara Sebagai Upaya Perolehan Average Energy (AE) Musik. PETIR, 14(1), 28–35. https://doi.org/10.33322/petir.v14i1.1022

Lyulin, O. M., Vasilchenko, S. S., & Perevalov, V. I. (2023). High sensitivity absorption spectroscopy of acetylene near 770 nm. Journal of Quantitative Spectroscopy and Radiative Transfer, 294(108402). https://doi.org/10.1016/j.jqsrt.2022.108402.

Pawly, J., Neitzel, R. L., & Basu, N. (2019). Analysis of copper, selenium, and zinc in newborn dried bloodspots using total reflection X-ray fluorescence (TXRF) spectroscopy. PeerJ Analytical Chemistry, 1, e1. https://doi.org/10.7717/peerj-achem.1

Pebralia, J. (2020). Prinsip Ketidakpastian Heisenberg dalam Tinjauan Kemajuan Pengukuran Kuantum di Abad 21. Journal Online of Physics, 5(2), 43–47. https://doi.org/10.22437/jop.v5i2.9049

Ray, A. (2023). Radiation effects and hardening of electronic components and systems: an overview. Indian Journal of Physics. https://doi.org/10.1007/s12648-023-02644-9

Ren, J., Qin, L., Feng, W., & Li, X.-Q. (2020). Weak-value-amplification analysis beyond the Aharonov-Albert-Vaidman limit. Physical Review A, 102(4), 042601. https://doi.org/10.1103/PhysRevA.102.042601

Riyani, A. N. E. S., Rizqiyah, P., & Junaidi, A. (2019). Mengidentifikasi Sinyal Suara Manusia Menggunakan Metode Fast Fourier Transform(FFT) Berbasis Matlab. J. of Insita, 1(2), 042–050. https://doi.org/10.20895/INISTA.V1I2

Rosdianto, H., & Toifur, M. (2017). Implementasi Teori Distribusi Probabilitas Gaussian pada Kualitas Rangkaian Penyearah Gelombang Penuh. Spektra: Jurnal Fisika Dan Aplikasinya, 2(1), 83 – 90. https://doi.org/10.21009/SPEKTRA.021.12

Salim, M. I., & Adnan Sauddin, M. I. N. (2022). Fourier Series Nonparametric Regression Model In The Case Of Open Unemployment Rate In South Sulawesi. Jurnal Matematika Dan Statistika Serta Aplikasinya, 10(2). https://doi.org/10.24252/msa.v10i2.30993

Sujito, S., Sunardi, S., Ma’ruf, M., & Hartini, S. (2019). Paradigma Teori Atom Lintas Waktu. Jurnal Filsafat Indonesia, 2(1), 42. https://doi.org/10.23887/jfi.v2i1.17551

Sutrisna, I., Nasrun, A., Bahri, M., & Toaha, S. (2019). Transformasi Fourier Fraksional dari Fungsi Gaussian. Jurnal Matematika, Statistika Dan Komputasi, 16(1), 19. https://doi.org/10.20956/jmsk.v16i1.5939

Uhl, D., Wituschek, A., Michiels, R., Trinter, F., Jahnke, T., Allaria, E., Callegari, C., Danailov, M., Di Fraia, M., Plekan, O., Bangert, U., Dulitz, K., Landmesser, F., Michelbach, M., Simoncig, A., Manfredda, M., Spampinati, S., Penco, G., Squibb, R. J., … Bruder, L. (2022). Extreme Ultraviolet Wave Packet Interferometry of the Autoionizing HeNe Dimer. The Journal of Physical Chemistry Letters, 13(36), 8470–8476. https://doi.org/10.1021/acs.jpclett.2c01619

Zhu, H., Duan, X., Fan, S., Wu, H., Lin, X., Ning, Y., & Wang, L. (2020). Scalable structure of coherent polarization beam combining based on tapered diode laser amplifiers. Optics & Laser Technology, 132(106470), 106470. https://doi.org/10.1016/j.optlastec.2020.106470

Author Biography

Dewi Wulandari, Universitas Negeri Medan

License

Copyright (c) 2023 Dewi Wulandari

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).