Synthesis and Characterization of Composites-Based Bacterial Cellulose by Ex-Situ Method as Separator Battery

Authors

Maria Ulfa , Inda Noviani , Emmy Yuanita , Ni Komang Tri Dharmayani , Sudirman , Sarkono

DOI:

10.29303/jppipa.v9i6.3819

Published:

2023-06-25

Issue:

Vol. 9 No. 6 (2023): June

Keywords:

Battery separator, BC/Al2O3, Ex-situ, Tofu waste liquid

Research Articles

Downloads

How to Cite

Ulfa, M. ., Noviani, I. ., Yuanita, E. ., Dharmayani, N. K. T. ., Sudirman, & Sarkono. (2023). Synthesis and Characterization of Composites-Based Bacterial Cellulose by Ex-Situ Method as Separator Battery. Jurnal Penelitian Pendidikan IPA, 9(6), 4647–4651. https://doi.org/10.29303/jppipa.v9i6.3819

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

Many studies have been conducted and developed on cellulose-based battery separator materials, including bacterial cellulose, which has characteristics like plant cellulose. This research aims to synthesize BC/Al2O3 composite and analyze its potential as a battery separator. The synthesis of the composite with the ex-situ method is to immerse BC from tofu liquid waste (fermentation time variation of 6, 7, and 8 days) into Al2O3 suspension. The characterization results showed that the immersion of Al2O3 in BC can increase porosity, electrolyte absorption, and conductivity, indicating that the composite has the potential to be used as a battery separator.

References

Atrak, K., Ramazani, A., F., T., & S. (2018). Green Synthesis of Amorphous and Gamma Aluminum Oxide Nanoparticles by Tragacanth Gel and Comparison of Their Photocatalytic Activity for The Degradation of Organic Dyes. Journal of Materials Science: Materials in Electronics, 29(10), 8347–8353. https://doi.org/10.1007/s10854-018-8845-2

Choi, S. M., Rao, K. M., Zo, S. M., Shin, E. J., & Han, S. S. (2022). Bacterial Cellulose and Its Applications. Polymers, 14(6), 1080. https://doi.org/10.3390/polym14061080

Costa, C. M., Lee, Y.-H., Kim, J.-H., Lee, S.-Y., & Lanceros-Méndez, S. (2019). Recent advances on separator membranes for lithium-ion battery applications: From porous membranes to solid electrolytes. Energy Storage Materials, 22, 346–375. https://doi.org/10.1016/j.ensm.2019.07.024

Fauza, A. N., Mardiyati, M. M., & Steven, S. (2019). Pembuatan dan Karakterisasi Separator Baterai Berbahan Selulosa Alga Cladophora. Jurnal Teknologi Bahan Dan Barang Teknik, 9(2), 69. https://doi.org/10.37209/jtbbt.v9i2.135

Galdino, C. J. S., Maia, A. D., Meira, H. M., Souza, T. C., Amorim, J. D. P., Almeida, F. C. G., Costa, A. F. S., & Sarubbo, L. A. (2020). Use of a bacterial cellulose filter for the removal of oil from wastewater. Process Biochemistry, 91, 288–296. https://doi.org/10.1016/j.procbio.2019.12.020

Ginting, D., Na Duma, T., Rahmadani, N., Suryani, Y., & Haryanti, R. (2023). Potential of Cellulose Acetat Separator of Empty Palm Oil Fruit Bunches and Polyvinylidene Fluoride for Energy Storage Applications. POSITRON, 13(1), 51. https://doi.org/10.26418/positron.v13i1.63784

Güzel, M., & Akpınar, Ö. (2019). Production and Characterization of Bacterial Cellulose from Citrus Peels. Waste and Biomass Valorization, 10(8), 2165–2175. https://doi.org/10.1007/s12649-018-0241-x

Hao, W., Bo, X., Xie, J., & Xu, T. (2022). Mechanical Properties of Macromolecular Separators for Lithium-Ion Batteries Based on Nanoindentation Experiment. Polymers, 14(17), 3664. https://doi.org/10.3390/polym14173664

Huy, V. P. H., So, S., & Hur, J. (2021). Inorganic fillers in composite gel polymer electrolytes for high-performance lithium and non-lithium polymer batteries. Nanomaterials, 11(3), 1–40. https://doi.org/10.3390/nano11030614

Lee, B.-S., Cui, S., Xing, X., Liu, H., Yue, X., Petrova, V., Lim, H.-D., Chen, R., & Liu, P. (2018). Dendrite Suppression Membranes for Rechargeable Zinc Batteries. ACS Applied Materials & Interfaces, 10(45), 38928–38935. https://doi.org/10.1021/acsami.8b14022

Li, W., Wang, S., Fan, Z., Li, S., Bernussi, A., & Newman, N. (2021). Functionalized bacterial cellulose as a separator to address polysulfides shuttling in lithium–sulfur batteries. Materials Today Energy, 21, 100813. https://doi.org/10.1016/j.mtener.2021.100813

Lu, W., Xie, C., Zhang, H., & Li, X. (2018). Inhibition of Zinc Dendrite Growth in Zincâ€Based Batteries. ChemSusChem, 11(23), 3996–4006. https://doi.org/10.1002/cssc.201801657

Muddasar, M., Beaucamp, A., Culebras, M., & Collins, M. N. (2022). Cellulose: Characteristics and applications for rechargeable batteries. International Journal of Biological Macromolecules, 219, 788–803. https://doi.org/10.1016/j.ijbiomac.2022.08.026

Mun, S. C., & Won, J. H. (2021). Manufacturing Processes of Microporous Polyolefin Separators for Lithium-Ion Batteries and Correlations between Mechanical and Physical Properties. Crystals, 11(9), 1013. https://doi.org/10.3390/cryst11091013

Pan, R., Sun, R., Wang, Z., Lindh, J., Edström, K., Strømme, M., & Nyholm, L. (2019). Double-sided conductive separators for lithium-metal batteries. Energy Storage Materials, 21, 464–473. https://doi.org/10.1016/j.ensm.2019.06.025

Qian, J., Chen, Q., Hong, M., Xie, W., Jing, S., Bao, Y., Chen, G., Pang, Z., Hu, L., & Li, T. (2022). Toward stretchable batteries: 3D-printed deformable electrodes and separator enabled by nanocellulose. Materials Today, 54, 18–26. https://doi.org/10.1016/j.mattod.2022.02.015

Sarkono, S., Moeljopawiro, S., Setiaji, B., & Sembiring, L. (2014). Physico-chemical Properties of Bacterial Cellulose Produced by Newly Strain Gluconacetobacter xylinus ANG-29 in Static and Shaking Fermentations. Biosciences Biotechnology Research Asia, 11(3), 1259–1265. https://doi.org/10.13005/bbra/1514

Tanpichai, S., Witayakran, S., Srimarut, Y., Woraprayote, W., & Malila, Y. (2019). Porosity, density and mechanical properties of the paper of steam exploded bamboo microfibers controlled by nanofibrillated cellulose. Journal of Materials Research and Technology, 8(4), 3612–3622. https://doi.org/10.1016/j.jmrt.2019.05.024

Wang, Z., Pan, R., Xu, C., Ruan, C., Edström, K., Strømme, M., & Nyholm, L. (2018). Conducting polymer paper-derived separators for lithium metal batteries. Energy Storage Materials, 13, 283–292. https://doi.org/10.1016/j.ensm.2018.02.006

Wei, N., Hu, J., Zhang, M., He, J., & Ni, P. (2019). Cross-linked porous polymer separator using vinyl-modified aluminum oxide nanoparticles as cross-linker for lithium-ion batteries. Electrochimica Acta, 307, 495–502. https://doi.org/10.1016/j.electacta.2019.04.010

Xu, Q., Wei, C., Fan, L., Peng, S., Xu, W., & Xu, J. (2017). A bacterial cellulose/Al2O3 nanofibrous composite membrane for a lithium-ion battery separator. Cellulose, 24(4), 1889–1899. https://doi.org/10.1007/s10570-017-1225-x

Yasa, I. W. S., Basuki, E., Saloko, S., & Handito, D. (2020). Sifat Fisik dan Mekanis Lembaran Kering Selulosa Bakteri Berbahan Dasar Limbah Hasil Pertanian. Jurnal Ilmiah Rekayasa Pertanian Dan Biosistem, 8(1), 89–99. https://doi.org/10.29303/jrpb.v8i1.170

Yu, X., & Manthiram, A. (2021). A review of composite polymer-ceramic electrolytes for lithium batteries. Energy Storage Materials, 34, 282–300. https://doi.org/10.1016/j.ensm.2020.10.006

Zhu, C., Zhang, J., Qiu, S., Jia, Y., Wang, L., & Wang, H. (2021). Tailoring the pore size of polyphenylene sulfide nonwoven with bacterial cellulose (BC) for heat-resistant and high-wettability separator in lithium-ion battery. Composites Communications, 24, 100659. https://doi.org/10.1016/j.coco.2021.100659

Author Biographies

Maria Ulfa, Universitas Mataram

Inda Noviani, Universitas Mataram

Emmy Yuanita, Universitas Mataram

Ni Komang Tri Dharmayani, Universitas Mataram

Sudirman, Universitas Mataram

License

Copyright (c) 2023 Maria Ulfa, Inda Noviani, Emmy Yuanita, Ni Komang Tri Dharmayani, Sudirman, Sarkono

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).