Synthesis and Characterization of Composites-Based Bacterial Cellulose by Ex-Situ Method as Separator Battery
DOI:
10.29303/jppipa.v9i6.3819Published:
2023-06-25Issue:
Vol. 9 No. 6 (2023): JuneKeywords:
Battery separator, BC/Al2O3, Ex-situ, Tofu waste liquidResearch Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
Many studies have been conducted and developed on cellulose-based battery separator materials, including bacterial cellulose, which has characteristics like plant cellulose. This research aims to synthesize BC/Al2O3 composite and analyze its potential as a battery separator. The synthesis of the composite with the ex-situ method is to immerse BC from tofu liquid waste (fermentation time variation of 6, 7, and 8 days) into Al2O3 suspension. The characterization results showed that the immersion of Al2O3 in BC can increase porosity, electrolyte absorption, and conductivity, indicating that the composite has the potential to be used as a battery separator.
References
Atrak, K., Ramazani, A., F., T., & S. (2018). Green Synthesis of Amorphous and Gamma Aluminum Oxide Nanoparticles by Tragacanth Gel and Comparison of Their Photocatalytic Activity for The Degradation of Organic Dyes. Journal of Materials Science: Materials in Electronics, 29(10), 8347–8353. https://doi.org/10.1007/s10854-018-8845-2
Choi, S. M., Rao, K. M., Zo, S. M., Shin, E. J., & Han, S. S. (2022). Bacterial Cellulose and Its Applications. Polymers, 14(6), 1080. https://doi.org/10.3390/polym14061080
Costa, C. M., Lee, Y.-H., Kim, J.-H., Lee, S.-Y., & Lanceros-Méndez, S. (2019). Recent advances on separator membranes for lithium-ion battery applications: From porous membranes to solid electrolytes. Energy Storage Materials, 22, 346–375. https://doi.org/10.1016/j.ensm.2019.07.024
Fauza, A. N., Mardiyati, M. M., & Steven, S. (2019). Pembuatan dan Karakterisasi Separator Baterai Berbahan Selulosa Alga Cladophora. Jurnal Teknologi Bahan Dan Barang Teknik, 9(2), 69. https://doi.org/10.37209/jtbbt.v9i2.135
Galdino, C. J. S., Maia, A. D., Meira, H. M., Souza, T. C., Amorim, J. D. P., Almeida, F. C. G., Costa, A. F. S., & Sarubbo, L. A. (2020). Use of a bacterial cellulose filter for the removal of oil from wastewater. Process Biochemistry, 91, 288–296. https://doi.org/10.1016/j.procbio.2019.12.020
Ginting, D., Na Duma, T., Rahmadani, N., Suryani, Y., & Haryanti, R. (2023). Potential of Cellulose Acetat Separator of Empty Palm Oil Fruit Bunches and Polyvinylidene Fluoride for Energy Storage Applications. POSITRON, 13(1), 51. https://doi.org/10.26418/positron.v13i1.63784
Güzel, M., & Akpınar, Ö. (2019). Production and Characterization of Bacterial Cellulose from Citrus Peels. Waste and Biomass Valorization, 10(8), 2165–2175. https://doi.org/10.1007/s12649-018-0241-x
Hao, W., Bo, X., Xie, J., & Xu, T. (2022). Mechanical Properties of Macromolecular Separators for Lithium-Ion Batteries Based on Nanoindentation Experiment. Polymers, 14(17), 3664. https://doi.org/10.3390/polym14173664
Huy, V. P. H., So, S., & Hur, J. (2021). Inorganic fillers in composite gel polymer electrolytes for high-performance lithium and non-lithium polymer batteries. Nanomaterials, 11(3), 1–40. https://doi.org/10.3390/nano11030614
Lee, B.-S., Cui, S., Xing, X., Liu, H., Yue, X., Petrova, V., Lim, H.-D., Chen, R., & Liu, P. (2018). Dendrite Suppression Membranes for Rechargeable Zinc Batteries. ACS Applied Materials & Interfaces, 10(45), 38928–38935. https://doi.org/10.1021/acsami.8b14022
Li, W., Wang, S., Fan, Z., Li, S., Bernussi, A., & Newman, N. (2021). Functionalized bacterial cellulose as a separator to address polysulfides shuttling in lithium–sulfur batteries. Materials Today Energy, 21, 100813. https://doi.org/10.1016/j.mtener.2021.100813
Lu, W., Xie, C., Zhang, H., & Li, X. (2018). Inhibition of Zinc Dendrite Growth in Zincâ€Based Batteries. ChemSusChem, 11(23), 3996–4006. https://doi.org/10.1002/cssc.201801657
Muddasar, M., Beaucamp, A., Culebras, M., & Collins, M. N. (2022). Cellulose: Characteristics and applications for rechargeable batteries. International Journal of Biological Macromolecules, 219, 788–803. https://doi.org/10.1016/j.ijbiomac.2022.08.026
Mun, S. C., & Won, J. H. (2021). Manufacturing Processes of Microporous Polyolefin Separators for Lithium-Ion Batteries and Correlations between Mechanical and Physical Properties. Crystals, 11(9), 1013. https://doi.org/10.3390/cryst11091013
Pan, R., Sun, R., Wang, Z., Lindh, J., Edström, K., Strømme, M., & Nyholm, L. (2019). Double-sided conductive separators for lithium-metal batteries. Energy Storage Materials, 21, 464–473. https://doi.org/10.1016/j.ensm.2019.06.025
Qian, J., Chen, Q., Hong, M., Xie, W., Jing, S., Bao, Y., Chen, G., Pang, Z., Hu, L., & Li, T. (2022). Toward stretchable batteries: 3D-printed deformable electrodes and separator enabled by nanocellulose. Materials Today, 54, 18–26. https://doi.org/10.1016/j.mattod.2022.02.015
Sarkono, S., Moeljopawiro, S., Setiaji, B., & Sembiring, L. (2014). Physico-chemical Properties of Bacterial Cellulose Produced by Newly Strain Gluconacetobacter xylinus ANG-29 in Static and Shaking Fermentations. Biosciences Biotechnology Research Asia, 11(3), 1259–1265. https://doi.org/10.13005/bbra/1514
Tanpichai, S., Witayakran, S., Srimarut, Y., Woraprayote, W., & Malila, Y. (2019). Porosity, density and mechanical properties of the paper of steam exploded bamboo microfibers controlled by nanofibrillated cellulose. Journal of Materials Research and Technology, 8(4), 3612–3622. https://doi.org/10.1016/j.jmrt.2019.05.024
Wang, Z., Pan, R., Xu, C., Ruan, C., Edström, K., Strømme, M., & Nyholm, L. (2018). Conducting polymer paper-derived separators for lithium metal batteries. Energy Storage Materials, 13, 283–292. https://doi.org/10.1016/j.ensm.2018.02.006
Wei, N., Hu, J., Zhang, M., He, J., & Ni, P. (2019). Cross-linked porous polymer separator using vinyl-modified aluminum oxide nanoparticles as cross-linker for lithium-ion batteries. Electrochimica Acta, 307, 495–502. https://doi.org/10.1016/j.electacta.2019.04.010
Xu, Q., Wei, C., Fan, L., Peng, S., Xu, W., & Xu, J. (2017). A bacterial cellulose/Al2O3 nanofibrous composite membrane for a lithium-ion battery separator. Cellulose, 24(4), 1889–1899. https://doi.org/10.1007/s10570-017-1225-x
Yasa, I. W. S., Basuki, E., Saloko, S., & Handito, D. (2020). Sifat Fisik dan Mekanis Lembaran Kering Selulosa Bakteri Berbahan Dasar Limbah Hasil Pertanian. Jurnal Ilmiah Rekayasa Pertanian Dan Biosistem, 8(1), 89–99. https://doi.org/10.29303/jrpb.v8i1.170
Yu, X., & Manthiram, A. (2021). A review of composite polymer-ceramic electrolytes for lithium batteries. Energy Storage Materials, 34, 282–300. https://doi.org/10.1016/j.ensm.2020.10.006
Zhu, C., Zhang, J., Qiu, S., Jia, Y., Wang, L., & Wang, H. (2021). Tailoring the pore size of polyphenylene sulfide nonwoven with bacterial cellulose (BC) for heat-resistant and high-wettability separator in lithium-ion battery. Composites Communications, 24, 100659. https://doi.org/10.1016/j.coco.2021.100659
Author Biographies
Maria Ulfa, Universitas Mataram
Inda Noviani, Universitas Mataram
Emmy Yuanita, Universitas Mataram
Ni Komang Tri Dharmayani, Universitas Mataram
Sudirman, Universitas Mataram
License
Copyright (c) 2023 Maria Ulfa, Inda Noviani, Emmy Yuanita, Ni Komang Tri Dharmayani, Sudirman, Sarkono
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).