Probability of Electron Ion 3Li^(2+) In Momentum Space At n ≤ 3

Authors

Safina Aulia Sani , Rike Dwi Wulandari , Ana Zuyyina Ulfah , Bambang Supriadi , Nilam Cahya Kusumaningtyas

DOI:

10.29303/jppipa.v9i10.4288

Published:

2023-10-25

Issue:

Vol. 9 No. 10 (2023): October

Keywords:

Ion Lithium, Probabilitas, Ruang Momentum

Research Articles

Downloads

How to Cite

Sani, S. A., Wulandari, R. D. ., Ulfah, A. Z., Supriadi, B., & Kusumaningtyas, N. C. (2023). Probability of Electron Ion 3Li^(2+) In Momentum Space At n ≤ 3. Jurnal Penelitian Pendidikan IPA, 9(10), 9026–9031. https://doi.org/10.29303/jppipa.v9i10.4288

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

Lithium ions (3)  is a particle that has a single electron and is formed because lithium metal loses 2 of its 3 valence electrons. Probability is the square modulus of a wave function. Electron probability is a description of the discovery of electrons in space. This study aims to determine the probability value of electron momentum of Lithium ion (3). This type of research is non-experimental research in the form of developing existing theories with theoretical research methods. When viewed from the main orbital quantum value, the greater the probability value or the easier the electron is found at a larger quantum number. When viewed from the level of the probability interval, the greater the probability interval, the greater the main quantum value. In accordance with the theory which states that the large main quantum number n and orbital quantum l result in the probability value of Lithium ions getting bigger.

References

Berman, G. P., James, D. F. V., & Kamenev, D. I. (2000). Quantum chaos of an ion trapped in a linear ion trap. Chaos, 10(2), 371–382. https://doi.org/10.1063/1.166504

Bransden, B., & Joachain, J. C. J. (1983). Physics Of Atoms and Molecules. New York: Longman Scientific and Technical.

Damayanti, D. D., Bambang, S., & Lailatul, N. (2019). Fungsi gelombang Ion Helium (_4^2 He^+) Pada Bilangan Kuantum ≤3 Dalam Ruang Momentum. FKIP e-PROCEEDING, 4(1), 252-257. Retrieved from https://jurnal.unej.ac.id/index.php/fkip-epro/article/view/15178

Frank, R., Sukochev, F., & Zanin, D. (2023). Asymptotics of singular values for quantum derivatives. Transactions of the American Mathematical Society, 376(03), 2047-2088. https://doi.org/10.48550/arXiv.2209.12559

Frank, R. (2023). Quantum Tutorials. Saint Jhon’s University. Retrieved from https://faculty.csbsju.edu/frioux/workinprogress.html

Gopi, B., Logeshwaran, J., Gowri, J., & Kiruthiga, T. (2022). The moment probability and impacts monitoring for electron cloud behavior of electronic computers by using quantum deep learning model. NeuroQuantology, 20(8), 6088-6100.

Hermanto, W. (2016). Fungsi Gelombang Atom Deuterium Dengan Pendekatan Persamaan Schrodinger. Prosiding Seminar Nasional Pendidikan Sains 2016, 794–802.

Kharismawati, I., & Supriadi, B. (2021). Probabilitas Partikel Dalam Kotak Tiga Dimensi Pada Bilangan Kuantum n ≤ 5. Jurnal Pembelajaran Fisika, 1(1), 58-63. https://doi.org/10.19184/jpf.v1i1.23136

Konstantopoulos, G., Koumoulos, E. P., & Charitidis, C. A. (2022). Digital Innovation Enabled Nanomaterial Manufacturing; Machine Learning Strategies and Green Perspectives. Nanomaterials, 12(15), 2646. https://doi.org/10.3390/nano12152646

Lombu, O. Z., Simbolon, T. R., & Ginting, T. (2013). Aplikasi Metode Beda Hingga Pada Persamaan Schrödinger Menggunakan Matlab. Jurnal Saintia Fisika, 3(1), 1-6. Retrieved from https://repositori.usu.ac.id/handle/123456789/77625

Naimah, N. (2019). Nilai Ekspektasi Atom Deuterium Dengan Pendekatan Persamaan Schrodinger. Universitas Jember. Retrieved from https://repository.unej.ac.id/handle/123456789/92714

Manik, J. T., Victor. R., and Zaki. S. 2022. Perhitungan energi keadaan dasar atom lithium menggunakan metode variasional dua parameter. Jurnal Sains dan Pendidikan Fisika (JSPF), 18(3), 379-385. https://doi.org/10.35580/jspf.v18i3.32939

Makmun, M. Supriadi, B., & Prihandono, T. (2020). Fungsi gelombang ion helium dalam representasi ruang posisi menggunakan persamaan schrodinger. Jurnal Pembelajaran Fisika, 9(4), 152-159. https://doi.org/10.19184/jpf.v9i4.19955

Men, L. K., & Setianto. 2017. Energi Total Keadaan Eksitasi Atom Litium Dengan Metode Variasi. JIIF (Jurnal Ilmu dan Inovasi Fisika), 1(1), 6-10. https://doi.org/10.24198/jiif.v1i01.10912

Qaswal, A. B. (2020). Lithium stabilizes the mood of bipolar patients by depolarizing the neuronal membrane via quantum tunneling through the sodium channels. Clinical Psychopharmacology and Neuroscience, 18(2), 214. https://doi.org/10.9758/cpn.2020.18.2.214

Saputra, B. H., Supriadi, B., & Prastowo, S. H. B. (2019). Ketidakpastian Momentum Atom Deuterium Menggunakan Pendekatan Ketidakpastian Heisenberg Pada Bilangan Kuantum n≤ 3. FKIP e-Proceeding, 4(1), 57-64. Retrieved from https://jurnal.unej.ac.id/index.php/fkip-epro/article/view/15136

Supriadi, B., Utoyo, E. B., Febriyanti, M. P., Hasanah, A., & Pratiwi, A. S. (2023). Lithium Ion Wave Function (3Li2+) In A Momentum Chamber At n≤3. Journal of Social Research, 2(6), 2055-2064. https://doi.org/10.55324/josr.v2i6.973

Supriadi, B., Anggraeni, F. K. A., Faridah, N., & Jannah, E. M. (2022). Fisika Kuantum. UPT Penerbitan Universitas Jember.

Siverns, J. D., Li, X., & Quraishi, Q. (2017). Ion–photon entanglement and quantum frequency conversion with trapped Ba^+ ions. Applied Optics, 56(3), B222. https://doi.org/10.1364/ao.56.00b222

Thiruvengadam, A. (2001). Effect of lithium and sodium valproate ions on resting membrane potentials in neurons: an hypothesis. J Affect Disord. 65, 95–99. https://doi.org/ 10.1016/S01650327(00)002160

Utami, F., Supriadi, B., & Lesmono, A. D. (2019). Probabilitas posisi elektron dalam atom tritium pada bilangan kuantum n≤3. FKIP e-PROCEEDING, 4(1), 241-245. https://jurnal.unej.ac.id/index.php/fkip-epro/article/view/15176

Wardani, S. K. (2019). Fungsi Gelombang Atom Tritium (Dengan Pendekatan Persamaan Schrodinger. Universitas Jember.

Yusron, M., Firdausi, K. S., & Sumariyah, S. (2007). Review Probabilitas Menemukan Elektron dengan Fungsi Gelombang Simetri dan Antisimetri pada Molekul. Berkala Fisika, 10(1), 7-12. Retrieved from https://ejournal.undip.ac.id/index.php/berkala_fisika/article/view/3070

Author Biographies

Safina Aulia Sani, University of Jember

Rike Dwi Wulandari, University of Jember

Ana Zuyyina Ulfah, University of Jember

Bambang Supriadi, University of Jember

Nilam Cahya Kusumaningtyas, University of Jember

License

Copyright (c) 2023 Safina Aulia Sani, Rike Dwi Wulandari, Ana Zuyyina Ulfah, Bambang Supriadi, Nilam Cahya Kusumaningtyas

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).