Measurement and Risk Analysis of Ozone (O3) Concentrations in the 9 MeV and 12 MeV Electron Mode LINAC
DOI:
10.29303/jppipa.v10i2.5347Published:
2024-02-25Issue:
Vol. 10 No. 2 (2024): FebruaryKeywords:
Electron, LINAC, OzonResearch Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
This study investigates potential non-radiation hazards, specifically Ozone (O3) production, during Linear Accelerator (LINAC) electron mode radiotherapy. The research uses experimental measurements to determine Ozone concentration in the LINAC patient waiting room and control room. Measurements are taken assuming a ±2-hour delay in one working day, using 9 MeV and 12 MeV energy, 400 MU dose rate, and illumination angles of 0o, 90o, and 270o. Maximum Ozone concentrations in the LINAC patient waiting room and control room are found to be 6.6 ppb (12 MeV) and 8.3 ppb (12 MeV), respectively. These concentrations fall below the chemical threshold limit and are deemed safe for human exposure. Notably, potentially detectable Ozone levels are observed in the LINAC banker. Overall, this research highlights the importance of monitoring Ozone levels to ensure the safety of both patients and personnel in LINAC facilities.
References
Adler, D., & Severnini, E. (2023). Timing matters: Intra-day shifts of economic activity and ambient ozone concentrations. Journal of Public Economics, 223. https://doi.org/10.1016/j.jpubeco.2023.104905
Arismunandar, & Silakhuddin. (2002). Struktur dan segi-segi keselamatan linac medik. Prosiding Seminar ke-7 Teknologi dan Keselamatan PLTN Serta Fasilitas Nuklik, 378-388. Retrieved from https://www.osti.gov/etdeweb/servlets/purl/20788495
Banaee, N., Goodarzi, K., & Nedaie, H. A. (2021). Neutron contamination in radiotherapy processes: a review study. Journal of Radiation Research, 62(6), 947-954. https://doi.org/10.1093/jrr/rrab076
Barshan, S., Pazirandeh, A., & Jahanfarnia, G. (2020). Measurement of ozone produced by 10 MeV electron accelerator Yazd in various currents. Journal of Instrumentation, 15(1). https://doi.org/10.1088/1748-0221/15/01/P01004
Cleland, M. R., & Galloway, R. A. (2015). Ozone Generation in Air during Electron Beam Processing. Physics Procedia, 66, 586–594. https://doi.org/10.1016/j.phpro.2015.05.078
Dubey, P., Sawatkar, A. R., Sathe, A. P., Sarma, K. S. S., & Soundararajan, S. (2009). Generation of Ozone and Safety Aspects in an Accelerator Facility of BARC. Indian Particle Accelerator Conference (InPAC), Fev, 10-13. Retrieved from https://inis.iaea.org/search/searchsinglerecord.aspx?recordsFor=SingleRecord&RN=46028312
Gao, Q., Zang, E., Bi, J., Dubrow, R., Lowe, S. R., Chen, H., Zeng, Y., Shi, L., & Chen, K. (2022). Long-term ozone exposure and cognitive impairment among Chinese older adults: A cohort study. Environment International, 160. https://doi.org/10.1016/j.envint.2021.107072
Guan, Y., Xiao, Y., Chu, C., Zhang, N., & Yu, L. (2022). Trends and characteristics of ozone and nitrogen dioxide related health impacts in Chinese cities. Ecotoxicology and Environmental Safety, 241. https://doi.org/10.1016/j.ecoenv.2022.113808
Hara, N., Oobuchi, J., Isobe, A., Sugimoto, S., Takatsu, J., & Sasai, K. (2022). Generation of ozone during irradiation using medical linear accelerators: an experimental study. Radiation Oncology, 17(1). https://doi.org/10.1186/s13014-022-02005-6
Izzati, L. W., Agus Firmansyah, M., & Bunawas, D. (2021). Risk of ozone exposure in LINAC room electron mode and attempts to minimize It: A theoretical review. Annual Nuclear Safety Seminar 2021, 116–121. Retrieved from https://inis.iaea.org/collection/NCLCollectionStore/_Public/53/122/53122451.pdf?r=1
John P. Gibbons. (2020). Khan’s The Physics of Radiation Therapy - six edition. Lippincott Williams & Wilkins.
Khabaz, R. (2018). Effect of each component of a LINAC therapy head on neutron and photon spectra. Applied Radiation and Isotopes, 139, 40–45. https://doi.org/10.1016/j.apradiso.2018.04.022
Khan, A. G., & Kumar, P. (2014). Beam dump for 10 kW 10 Mev LINAC. Applied Thermal Engineering, 70(1), 541–545. https://doi.org/10.1016/j.applthermaleng.2014.05.065
Kurniasari, S., Hentihu, F. K., Anto, A. K., & Prasetyo, H. (2022). The Measurement of Enviromental Radiation Exposure Around the Linac Radiotherapy Bunker. Indonesian Physical Review, 5(1), 23. https://doi.org/10.29303/ip
Lee, J., Lee, H.-Y., Im, I.-C., & Yu, Y.-S. (2016). Variation of Indoor Average Ozone Concentration within the Radiation Therapy Room by High Energy Radiation. Journal of the Korean Society of Radiology, 10(3), 171–180. https://doi.org/10.7742/jksr.2016.10.3.171
Ma, R., Ban, J., Wang, Q., & Li, T. (2020). Statistical spatial-temporal modeling of ambient ozone exposure for environmental epidemiology studies: A review. In Science of the Total Environment, 701, 134463. https://doi.org/10.1016/j.scitotenv.2019.134463
Mihai, A. M., Rock, L., & Milano, M. T. (2021). Technical challenges of linac-based stereotactic ablative body radiotherapy: Short review for non-radiation oncologists. In Annals of Palliative Medicine, 10(5), 5931–5943. https://doi.org/10.21037/apm-20-950
Mirnawati, F., Jati, S. P., & Sugiarto, J. (2019). Evaluation Of Linear Accelerator Utilization for Ca Mammae Radiotherapy At A Private Hospital. Indonesian Journal of Health Administration, 7(2), 132–138. https://doi.org/10.20473/jaki.v7i2.2019.132-138
Mishra, A. S., Verma, V. P., Choudhary, R. S., Goswami, S. G., Petwal, V. C., & Dwivedi, J. (2018). Ozone concentration study using 10 MeV electron beam accelerator. In Proceedings of the twenty first national symposium on radiation physics: book of abstracts cum souvenir 48. Retrieved from https://inis.iaea.org/search/search.aspx?orig_q=RN:49082934
Mittal, K. C. (2012). High power electron accelerators for radiation processing and its safety aspects. In Indian Journal of Pure & Applied Physics, 50, 772-775. Retrieved from https://nopr.niscpr.res.in/handle/123456789/14899
Nazaroff, W. W., & Weschler, C. J. (2022). Indoor ozone: Concentrations and influencing factors. In Indoor Air, 32(1). https://doi.org/10.1111/ina.12942
Niu, Y., Cai, J., Xia, Y., Yu, H., Chen, R., Lin, Z., Liu, C., Chen, C., Wang, W., Peng, L., Xia, X., Fu, Q., & Kan, H. (2018). Estimation of personal ozone exposure using ambient concentrations and influencing factors. Environment International, 117, 237–242. https://doi.org/10.1016/j.envint.2018.05.017
Nuvolone, D., Petri, D., & Voller, F. (2018). The effects of ozone on human health. Environmental Science and Pollution Research, 25(9), 8074–8088. https://doi.org/10.1007/s11356-017-9239-3
Pieri, L., Vignudelli, M., Bartolucci, F., Salvatorelli, F., Di Michele, C., Tavano, N., Rossi, P., & Dinelli, G. (2015). Integrated environmental quality monitoring around an underground methane storage station. Chemosphere, 131, 130–138. https://doi.org/10.1016/j.chemosphere.2015.03.009
Polaczek-Grelik, K., Kawa-Iwanicka, A., Rygielski, M., & Michalecki, Å. (2019). Gamma Radiation in the Vicinity of the Entrance to Linac Radiotherapy Room. In Use of Gamma Radiation Techniques in Peaceful Applications, 157. https://doi.org/10.5772/intechopen.82726
Pupillo, F., Piliero, M. A., Casiraghi, M., Bellesi, L., & Presilla, S. (2023). RapidPlan models for prostate radiotherapy treatment planning with 10-MV photon beams. Journal of Radiotherapy in Practice, 22(187). https://doi.org/10.1017/S1460396922000267
Rismawati, S. N., Noor, J. A. E., Yueniwati, Y., & Hentihu, F. K. (2022). Impact of In-House Bolus Thickness on The Percentage of Surface Dose for 10 and 12 MeV Electron Beams. Jurnal Penelitian Pendidikan IPA, 8(6), 2833–2839. https://doi.org/10.29303/jppipa.v8i6.2344
Salonen, H., Salthammer, T., & Morawska, L. (2018). Human exposure to ozone in school and office indoor environments. In Environment International 119, 503–514. https://doi.org/10.1016/j.envint.2018.07.012
Weschler, C. J. (2000). Ozone in Indoor Environments: Concentration and Chemistry. Indoor Air, 10, 269–288. Retrieved from https://www.aivc.org/sites/default/files/airbase_13439.pdf
Xue, X. M., Ru, S. M., Gu, X. N., Wu, Z., Yang, X., & Zhan, J. M. (2021). Gamma Radiation Source and Accelerator Room Radiation Shielding and Its Ozone Concentration Calculation Software Design. Hedianzixue Yu Tance Jishu/Nuclear Electronics and Detection Technology, 41(4), 620–624.
Yunasfi, Mudjiono, Irwanti Dwi, & Hanifa. (2003). Penggunaan Akselerator untuk terapi di Indonesia. Proseding Seminar Pengembangan Teknologi Dan Perekayasaan Instrumentasi Nuklir, 97-100. Retrieved from https://inis.iaea.org/collection/NCLCollectionStore/_Public/37/092/37092470.pdf
Author Biographies
Nur Khasanah, Universitas Islam Negeri Mataram
Raehanah, Universitas Islam Negeri Mataram
Bunawas, NuklindoLab-Koperasi JKRL
I Wayan Ari M, RSUD Provinsi NTB
Rinarto Subroto, RSUD Provinsi NTB
Lalu Sahrul H, University of Mataram
Paramita Putri A, Universitas Islam Negeri Mataram
Dia Ulfariah, Universitas Islam Negeri Mataram
License
Copyright (c) 2024 Nur Khasanah, Raehanah, Bunawas, I Wayan Ari M, Rinarto Subroto, Lalu Sahrul H, Paramita Putri A, Dia Ulfariah
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).