Vol. 10 No. 2 (2024): February
Open Access
Peer Reviewed

Measurement and Risk Analysis of Ozone (O3) Concentrations in the 9 MeV and 12 MeV Electron Mode LINAC

Authors

Nur Khasanah , Raehanah , Bunawas , I Wayan Ari M , Rinarto Subroto , Lalu Sahrul H , Paramita Putri A , Dia Ulfariah

DOI:

10.29303/jppipa.v10i2.5347

Published:

2024-02-25

Downloads

Abstract

This study investigates potential non-radiation hazards, specifically Ozone (O3) production, during Linear Accelerator (LINAC) electron mode radiotherapy. The research uses experimental measurements to determine Ozone concentration in the LINAC patient waiting room and control room. Measurements are taken assuming a ±2-hour delay in one working day, using 9 MeV and 12 MeV energy, 400 MU dose rate, and illumination angles of 0o, 90o, and 270o. Maximum Ozone concentrations in the LINAC patient waiting room and control room are found to be 6.6 ppb (12 MeV) and 8.3 ppb (12 MeV), respectively. These concentrations fall below the chemical threshold limit and are deemed safe for human exposure. Notably, potentially detectable Ozone levels are observed in the LINAC banker. Overall, this research highlights the importance of monitoring Ozone levels to ensure the safety of both patients and personnel in LINAC facilities.

Keywords:

Electron, LINAC, Ozon

References

Adler, D., & Severnini, E. (2023). Timing matters: Intra-day shifts of economic activity and ambient ozone concentrations. Journal of Public Economics, 223. https://doi.org/10.1016/j.jpubeco.2023.104905

Arismunandar, & Silakhuddin. (2002). Struktur dan segi-segi keselamatan linac medik. Prosiding Seminar ke-7 Teknologi dan Keselamatan PLTN Serta Fasilitas Nuklik, 378-388. Retrieved from https://www.osti.gov/etdeweb/servlets/purl/20788495

Banaee, N., Goodarzi, K., & Nedaie, H. A. (2021). Neutron contamination in radiotherapy processes: a review study. Journal of Radiation Research, 62(6), 947-954. https://doi.org/10.1093/jrr/rrab076

Barshan, S., Pazirandeh, A., & Jahanfarnia, G. (2020). Measurement of ozone produced by 10 MeV electron accelerator Yazd in various currents. Journal of Instrumentation, 15(1). https://doi.org/10.1088/1748-0221/15/01/P01004

Cleland, M. R., & Galloway, R. A. (2015). Ozone Generation in Air during Electron Beam Processing. Physics Procedia, 66, 586–594. https://doi.org/10.1016/j.phpro.2015.05.078

Dubey, P., Sawatkar, A. R., Sathe, A. P., Sarma, K. S. S., & Soundararajan, S. (2009). Generation of Ozone and Safety Aspects in an Accelerator Facility of BARC. Indian Particle Accelerator Conference (InPAC), Fev, 10-13. Retrieved from https://inis.iaea.org/search/searchsinglerecord.aspx?recordsFor=SingleRecord&RN=46028312

Gao, Q., Zang, E., Bi, J., Dubrow, R., Lowe, S. R., Chen, H., Zeng, Y., Shi, L., & Chen, K. (2022). Long-term ozone exposure and cognitive impairment among Chinese older adults: A cohort study. Environment International, 160. https://doi.org/10.1016/j.envint.2021.107072

Guan, Y., Xiao, Y., Chu, C., Zhang, N., & Yu, L. (2022). Trends and characteristics of ozone and nitrogen dioxide related health impacts in Chinese cities. Ecotoxicology and Environmental Safety, 241. https://doi.org/10.1016/j.ecoenv.2022.113808

Hara, N., Oobuchi, J., Isobe, A., Sugimoto, S., Takatsu, J., & Sasai, K. (2022). Generation of ozone during irradiation using medical linear accelerators: an experimental study. Radiation Oncology, 17(1). https://doi.org/10.1186/s13014-022-02005-6

Izzati, L. W., Agus Firmansyah, M., & Bunawas, D. (2021). Risk of ozone exposure in LINAC room electron mode and attempts to minimize It: A theoretical review. Annual Nuclear Safety Seminar 2021, 116–121. Retrieved from https://inis.iaea.org/collection/NCLCollectionStore/_Public/53/122/53122451.pdf?r=1

John P. Gibbons. (2020). Khan’s The Physics of Radiation Therapy - six edition. Lippincott Williams & Wilkins.

Khabaz, R. (2018). Effect of each component of a LINAC therapy head on neutron and photon spectra. Applied Radiation and Isotopes, 139, 40–45. https://doi.org/10.1016/j.apradiso.2018.04.022

Khan, A. G., & Kumar, P. (2014). Beam dump for 10 kW 10 Mev LINAC. Applied Thermal Engineering, 70(1), 541–545. https://doi.org/10.1016/j.applthermaleng.2014.05.065

Kurniasari, S., Hentihu, F. K., Anto, A. K., & Prasetyo, H. (2022). The Measurement of Enviromental Radiation Exposure Around the Linac Radiotherapy Bunker. Indonesian Physical Review, 5(1), 23. https://doi.org/10.29303/ip

Lee, J., Lee, H.-Y., Im, I.-C., & Yu, Y.-S. (2016). Variation of Indoor Average Ozone Concentration within the Radiation Therapy Room by High Energy Radiation. Journal of the Korean Society of Radiology, 10(3), 171–180. https://doi.org/10.7742/jksr.2016.10.3.171

Ma, R., Ban, J., Wang, Q., & Li, T. (2020). Statistical spatial-temporal modeling of ambient ozone exposure for environmental epidemiology studies: A review. In Science of the Total Environment, 701, 134463. https://doi.org/10.1016/j.scitotenv.2019.134463

Mihai, A. M., Rock, L., & Milano, M. T. (2021). Technical challenges of linac-based stereotactic ablative body radiotherapy: Short review for non-radiation oncologists. In Annals of Palliative Medicine, 10(5), 5931–5943. https://doi.org/10.21037/apm-20-950

Mirnawati, F., Jati, S. P., & Sugiarto, J. (2019). Evaluation Of Linear Accelerator Utilization for Ca Mammae Radiotherapy At A Private Hospital. Indonesian Journal of Health Administration, 7(2), 132–138. https://doi.org/10.20473/jaki.v7i2.2019.132-138

Mishra, A. S., Verma, V. P., Choudhary, R. S., Goswami, S. G., Petwal, V. C., & Dwivedi, J. (2018). Ozone concentration study using 10 MeV electron beam accelerator. In Proceedings of the twenty first national symposium on radiation physics: book of abstracts cum souvenir 48. Retrieved from https://inis.iaea.org/search/search.aspx?orig_q=RN:49082934

Mittal, K. C. (2012). High power electron accelerators for radiation processing and its safety aspects. In Indian Journal of Pure & Applied Physics, 50, 772-775. Retrieved from https://nopr.niscpr.res.in/handle/123456789/14899

Nazaroff, W. W., & Weschler, C. J. (2022). Indoor ozone: Concentrations and influencing factors. In Indoor Air, 32(1). https://doi.org/10.1111/ina.12942

Niu, Y., Cai, J., Xia, Y., Yu, H., Chen, R., Lin, Z., Liu, C., Chen, C., Wang, W., Peng, L., Xia, X., Fu, Q., & Kan, H. (2018). Estimation of personal ozone exposure using ambient concentrations and influencing factors. Environment International, 117, 237–242. https://doi.org/10.1016/j.envint.2018.05.017

Nuvolone, D., Petri, D., & Voller, F. (2018). The effects of ozone on human health. Environmental Science and Pollution Research, 25(9), 8074–8088. https://doi.org/10.1007/s11356-017-9239-3

Pieri, L., Vignudelli, M., Bartolucci, F., Salvatorelli, F., Di Michele, C., Tavano, N., Rossi, P., & Dinelli, G. (2015). Integrated environmental quality monitoring around an underground methane storage station. Chemosphere, 131, 130–138. https://doi.org/10.1016/j.chemosphere.2015.03.009

Polaczek-Grelik, K., Kawa-Iwanicka, A., Rygielski, M., & Michalecki, Å. (2019). Gamma Radiation in the Vicinity of the Entrance to Linac Radiotherapy Room. In Use of Gamma Radiation Techniques in Peaceful Applications, 157. https://doi.org/10.5772/intechopen.82726

Pupillo, F., Piliero, M. A., Casiraghi, M., Bellesi, L., & Presilla, S. (2023). RapidPlan models for prostate radiotherapy treatment planning with 10-MV photon beams. Journal of Radiotherapy in Practice, 22(187). https://doi.org/10.1017/S1460396922000267

Rismawati, S. N., Noor, J. A. E., Yueniwati, Y., & Hentihu, F. K. (2022). Impact of In-House Bolus Thickness on The Percentage of Surface Dose for 10 and 12 MeV Electron Beams. Jurnal Penelitian Pendidikan IPA, 8(6), 2833–2839. https://doi.org/10.29303/jppipa.v8i6.2344

Salonen, H., Salthammer, T., & Morawska, L. (2018). Human exposure to ozone in school and office indoor environments. In Environment International 119, 503–514. https://doi.org/10.1016/j.envint.2018.07.012

Weschler, C. J. (2000). Ozone in Indoor Environments: Concentration and Chemistry. Indoor Air, 10, 269–288. Retrieved from https://www.aivc.org/sites/default/files/airbase_13439.pdf

Xue, X. M., Ru, S. M., Gu, X. N., Wu, Z., Yang, X., & Zhan, J. M. (2021). Gamma Radiation Source and Accelerator Room Radiation Shielding and Its Ozone Concentration Calculation Software Design. Hedianzixue Yu Tance Jishu/Nuclear Electronics and Detection Technology, 41(4), 620–624.

Yunasfi, Mudjiono, Irwanti Dwi, & Hanifa. (2003). Penggunaan Akselerator untuk terapi di Indonesia. Proseding Seminar Pengembangan Teknologi Dan Perekayasaan Instrumentasi Nuklir, 97-100. Retrieved from https://inis.iaea.org/collection/NCLCollectionStore/_Public/37/092/37092470.pdf

Author Biographies

Nur Khasanah, Universitas Islam Negeri Mataram

Raehanah, Universitas Islam Negeri Mataram

Bunawas, NuklindoLab-Koperasi JKRL

I Wayan Ari M, RSUD Provinsi NTB

Rinarto Subroto, RSUD Provinsi NTB

Lalu Sahrul H, University of Mataram

Paramita Putri A, Universitas Islam Negeri Mataram

Dia Ulfariah, Universitas Islam Negeri Mataram

Downloads

Download data is not yet available.

How to Cite

Khasanah, N., Raehanah, Bunawas, M, I. W. A., Subroto, R., H, L. S., … Ulfariah, D. (2024). Measurement and Risk Analysis of Ozone (O3) Concentrations in the 9 MeV and 12 MeV Electron Mode LINAC . Jurnal Penelitian Pendidikan IPA, 10(2), 757–763. https://doi.org/10.29303/jppipa.v10i2.5347