Clustering Village Development in West Java Province on the Condition of Developing Village Strata Using K-Means Algorithm
DOI:
10.29303/jppipa.v9iSpecialIssue.5937Published:
2023-12-25Issue:
Vol. 9 No. SpecialIssue (2023): UNRAM journals and research based on science education, science applications towards a golden Indonesia 2045Keywords:
Clustering, Data mining, K-Means algorithmResearch Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
Villages are important units in the socio-economic structure of a country, and an in-depth understanding of the factors that influence village growth and welfare is essential. To facilitate the local government in handling the equitable distribution of village needs, it is necessary to cluster or group villages. The purpose of this research is to assist the government in clustering certain villages into several clusters, making it easier to monitor and procure village needs within the West Java Provincial government. Clustering is done using the K-Means algorithm. The application of the K-Means Algorithm by determining the Cluster value is 96. The results showed that each cluster has its own membership number. Cluster 0 consists of 8 villages, Cluster 1 consists of 12 villages, and Cluster 2 consists of 8 villages. Furthermore, in testing the performance of the K-Means algorithm by dividing into 96 clusters, the Davies Bouldin Index value is -0.996. From the results of data processing and analysis, it is necessary to provide assistance and procurement of village needs for villages with low clusters by the West Java provincial government
References
Adinugroho, S., Wihandika, R. C., & Adikara, P. P. (2022). Newsgroup topic extraction using term-cluster weighting and Pillar K-Means clustering. International Journal of Computers and Applications, 44(4), 357–364. https://doi.org/10.1080/1206212X.2020.1757246
Agarwal, P., & Mehta, S. (2016). Enhanced flower pollination algorithm on data clustering. International Journal of Computers and Applications, 38(2–3), 144–155. https://doi.org/10.1080/1206212X.2016.1224401
Alhapizi, M. R., Nasir, M., & Effendy, I. (2020). Penerapan Data Mining Menggunakan Algoritma K-Means Clustering Untuk Menentukan Strategi Promosi Mahasiswa Baru Universitas Bina Darma Palembang. Journal of Software Engineering Ampera, 1(1), 1–14. https://doi.org/10.51519/journalsea.v1i1.10
Anantathanavit, M., & Munlin, M. (2016). Using K-means radius particle swarm optimization for the travelling salesman problem. IETE Technical Review (Institution of Electronics and Telecommunication Engineers, India), 33(2), 172–180. https://doi.org/10.1080/02564602.2015.1057770
Chen, J. H., Chang, Y. C., & Hung, W. L. (2020). A self-organizing clustering algorithm for functional data. Communications in Statistics: Simulation and Computation, 49(5), 1237–1263. https://doi.org/10.1080/03610918.2018.1494280
DPM-Desa Provinsi Jawa Barat. (2023). PORTAL BERDESA JAWA BARAT. Portaldatadesa. https://portaldatadesa.jabarprov.go.id/
Economou, P. (2023). A clustering algorithm for overlapping Gaussian mixtures. Research in Statistics, 1(1), 0. https://doi.org/10.1080/27684520.2023.2242337
Feng, Z., & Zhang, J. (2022). Nonparametric K-means algorithm with applications in economic and functional data. Communications in Statistics - Theory and Methods, 51(2), 537–551. https://doi.org/10.1080/03610926.2020.1752383
Filki, Y. (2022). Algoritma K-Means Clustering dalam Memprediksi Penerima Bantuan Langsung Tunai (BLT) Dana Desa. Jurnal Informatika Ekonomi Bisnis, 4, 166–171. https://doi.org/10.37034/infeb.v4i4.166
Fuss, C. E., Berg, A. A., & Lindsay, J. B. (2016). DEM Fusion using a modified k-means clustering algorithm. International Journal of Digital Earth, 9(12), 1242–1255. https://doi.org/10.1080/17538947.2016.1208685
Gunawan, G., Jufri, A. W., Sedijani, P., Hadiprayitno, G., & Bachtiar, I. (2019). Pelatihan Penulisan Pada Jurnal Internasional Bagi Dosen Dan Mahasiswa Magister Pendidikan Ipa Unram. Jurnal Pendidikan Dan Pengabdian Masyarakat, 2(4). https://doi.org/10.29303/jppm.v2i4.1526
Kakoudakis, K., Behzadian, K., Farmani, R., & Butler, D. (2017). Pipeline failure prediction in water distribution networks using evolutionary polynomial regression combined with K-means clustering. Urban Water Journal, 14(7), 737–742. https://doi.org/10.1080/1573062X.2016.1253755
Kamalha, E., Kiberu, J., Nibikora, I., Mwasiagi, J. I., & Omollo, E. (2018). Clustering and Classification of Cotton Lint Using Principle Component Analysis, Agglomerative Hierarchical Clustering, and K-Means Clustering. Journal of Natural Fibers, 15(3), 425–435. https://doi.org/10.1080/15440478.2017.1340220
Kim, H. S., Kim, S. K., & Kang, L. S. (2021). BIM performance assessment system using a K-means clustering algorithm. Journal of Asian Architecture and Building Engineering, 20(1), 78–87. https://doi.org/10.1080/13467581.2020.1800471
Kouhi Esfahani, R., Shahbazi, F., & Akbarzadeh, M. (2019). Three-phase classification of an uninterrupted traffic flow: a k-means clustering study. Transportmetrica B, 7(1), 546–558. https://doi.org/10.1080/21680566.2018.1447409
Li, J., Zheng, A., Guo, W., Bandyopadhyay, N., Zhang, Y., & Wang, Q. (2023). Urban flood risk assessment based on DBSCAN and K-means clustering algorithm. Geomatics, Natural Hazards and Risk, 14(1). https://doi.org/10.1080/19475705.2023.2250527
Liu, Y., & Chen, J. (2019). A K-means based firefly algorithm for localization in sensor networks. International Journal of Parallel, Emergent and Distributed Systems, 34(4), 364–379. https://doi.org/10.1080/17445760.2018.1446211
Okta Jaya Harmaja, Hadirat Halawa, Wicarda Sandi Hulu, & Seriani Loi. (2023). Implementasi Algoritma K-Means Clustering Untuk Pengelompokkan Penyakit Pasien Pada Puskesmas Pulo Brayan. Jurnal Sains Dan Teknologi, Volume 5 No. 1(1), 150–157.
Owsiński, J. W., Opara, K., Stańczak, J., Kacprzyk, J., & Zadrożny, S. (2017). Reverse clustering: an outline for a concept and its use. Toxicological and Environmental Chemistry, 99(7–8), 1078–1095. https://doi.org/10.1080/02772248.2017.1333614
Pattamaset, S., & Choi, J. S. (2020). Irrelevant data elimination based on a k-means clustering algorithm for efficient data aggregation and human activity classification in smart home sensor networks. International Journal of Distributed Sensor Networks, 16(6). https://doi.org/10.1177/1550147720929828
Reena Roy, R., & Anandha Mala, G. S. (2023). An Improved K-Means Clustering for Segmentation of Pancreatic Tumor from CT Images. IETE Journal of Research, 69(7), 3966–3973. https://doi.org/10.1080/03772063.2021.1944335
Santos, A. C. S., & Pedrini, H. (2016). Kombinasi pengelompokan k-means dan pemfilteran entropi untuk pemilihan band dan klasifikasi pada citra hiperspektral. 1161, 3005–3020.
Sioyong, D. (2023). Implementasi data mining menggunakan algoritma k-means clustering penyakit pasien rawat jalan pada klinik dr . Atirah. 7(5), 1–8.
Syoer, R. R., & Wahyudin, Y. (2021). Analisis Kelompok Dengan Algoritma Fuzzy Clustering (Studi Kasus Pengelompokkan Desa Di Provinsi Kalimantan Timur). BESTARI: Buletin Statisitika Dan Aplikasi Terkini, 1, 1–11. https://bestari.bpskaltim.com/index.php/bestari-bpskaltim/article/view/1/2
Varanasi, J., & Tripathi, M. M. (2019). K-means clustering based photo voltaic power forecasting using artificial neural network, particle swarm optimization and support vector regression. Journal of Information and Optimization Sciences, 40(2), 309–328. https://doi.org/10.1080/02522667.2019.1578091
Vats, S., & Sagar, B. B. (2019). Performance evaluation of K-means clustering on Hadoop infrastructure. Journal of Discrete Mathematical Sciences and Cryptography, 22(8), 1349–1363. https://doi.org/10.1080/09720529.2019.1692444
Virgo, I., Defit, S., & Yuhandri, Y. (2020). Klasterisasi Tingkat Kehadiran Dosen Menggunakan Algoritma K-Means Clustering. Jurnal Sistim Informasi Dan Teknologi, 2, 23–28. https://doi.org/10.37034/jsisfotek.v2i1.17
Xiaoqiong, W., & Zhang, Y. E. (2020). Image segmentation algorithm based on dynamic particle swarm optimization and K-means clustering. International Journal of Computers and Applications, 42(7), 649–654. https://doi.org/10.1080/1206212X.2018.1521090
Yolanda, E. (2023). Penerapan Algoritma K-Means Clustering Untuk Pengelompokan Data Pasien Rehabilitasi Narkoba. KLIK: Kajian Ilmiah Informatika Dan Komputer, 4(1), 182–191. https://doi.org/10.30865/klik.v4i1.1107
Zhang, S., Li, S., Hu, J., Xing, H., & Zhu, W. (2019). An iterative algorithm for optimal variable weighting in K-means clustering. Communications in Statistics: Simulation and Computation, 48(5), 1346–1365. https://doi.org/10.1080/03610918.2017.1414244
Author Biographies
Nurahman, Universitas Darwan Ali
Nurani Aisiyah Tanjung, Universitas Darwan Ali
License
Copyright (c) 2023 Nurahman, Nurani Aisiyah Tanjung

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).