Study of Urban Growth Center Development Factors and Simulation The Mamminasata Urban Area

Authors

Emil Salim Rasyidi , Jumadil , Syafri , Rahmawati Rahman , Rusneni , Hamsinah , Muh. Khalil Jibran

DOI:

10.29303/jppipa.v10i4.6380

Published:

2024-04-25

Issue:

Vol. 10 No. 4 (2024): April

Keywords:

Mamminasata, OBIA, Regional Growth Center, Spatial Simulation

Research Articles

Downloads

How to Cite

Rasyidi, E. S., Jumadil, Syafri, Rahman, R., Rusneni, Hamsinah, & Jibran, M. K. (2024). Study of Urban Growth Center Development Factors and Simulation The Mamminasata Urban Area. Jurnal Penelitian Pendidikan IPA, 10(4), 1976–1988. https://doi.org/10.29303/jppipa.v10i4.6380

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

Urban growth starts from a center and affects the surrounding areas, this is due to the emergence of additional centers that will each function as growth poles, to study the dynamics related to urban growth center information, several data and extraction and analysis methods are needed. This study examines several methods of extracting information on urban growth centers from Landsat 8 OLI/TIRS in 2013 and 2023 by utilizing the spectral resolution of Landsat imagery in the Mamminasata area, and integrating spatial modeling to simulate the growth centers of the Mamminasata area in the next 10 years (2043). The results of this research classification method show an accuracy rate of 71.48%. The results of the determinant factor test show that the most influential factors are the distance from the center of shops, slope, then the distance from the university, and the distance from the main road in 2013-2023 Mamminasata Urban Area. The results of this variable drive test are then used in spatial simulations using the markov chain simulation method in the LCM module and show an increase in the area of the growth center in the Mamminasata region, for the entire scope of the Mamminasata region, the Makassar City area shows the highest intensity of regional growth centers and becomes the center of growth in the Mamminasata urban area. The planning concept applied to the results of this study is based on resources, geographic location, and factors affecting the growth center.

References

Al-Kheder, S. A. (2006). Urban growth modeling with artificial intelligence techniques. Purdue University. Retrieved from https://docs.lib.purdue.edu/dissertations/AAI3259984/

Aldalbahi, M., & Walker, G. (2015). Attitudes and policy implications of urban growth boundary and traffic congestion reduction in Riyadh, Saudi Arabia. International Conference Data Mining, 1–2. Retrieved from http://iieng.org/images/proceedings_pdf/2526E0215016.pdf

Bai, Y., Deng, X., Jiang, S., Zhang, Q., & Wang, Z. (2018). Exploring the relationship between urbanization and urban eco-efficiency: Evidence from prefecture-level cities in China. Journal of Cleaner Production, 195, 1487–1496. https://doi.org/10.1016/j.jclepro.2017.11.115

Bakshi, A., & Esraz-Ul-Zannat, M. (2023). Application of urban growth boundary delineation based on a neural network approach and landscape metrics for Khulna City, Bangladesh. Heliyon, 9(6). Retrieved from https://www.cell.com/heliyon/pdf/S2405-8440(23)03479-5.pdf

Bouhennache, R., Bouden, T., Taleb-Ahmed, A., & Cheddad, A. (2019). A new spectral index for the extraction of built-up land features from Landsat 8 satellite imagery. Geocarto International, 34(14), 1531–1551. https://doi.org/10.1080/10106049.2018.1497094

Carlino, G. A., & Mills, E. S. (1987). The determinants of county growth. Journal of Regional Science, 27(1), 39–54. https://doi.org/10.1111/j.1467-9787.1987.t

Cengiz, S., Görmücs, S., & Ouguz, D. (2022). Analysis of the urban growth pattern through spatial metrics; Ankara City. Land Use Policy, 112, 105812. https://doi.org/10.1016/j.landusepol.2021.105812

Cheng, J., & Masser, I. (2003). Urban growth pattern modeling: a case study of Wuhan city, PR China. Landscape and Urban Planning, 62(4), 199–217. https://doi.org/10.1016/S0169-2046(02)00150-0

Cheng, J., & Masser, I. (2004). Understanding spatial and temporal processes of urban growth: cellular automata modelling. Environment and Planning B: Planning and Design, 31(2), 167–194. https://doi.org/10.1068/b2975

Danoedoro, P. (2012). Pengantar penginderaan jauh digital. In Yogyakarta: Penerbit Andi.

Dinka, M. O., & Klik, A. (2019). Effect of land use--land cover change on the regimes of surface runoff—the case of Lake Basaka catchment (Ethiopia). Environmental Monitoring and Assessment, 191(5), 278. https://doi.org/10.1007/s10661-019-7439-7

Estoque, R. C., & Murayama, Y. (2013). Landscape pattern and ecosystem service value changes: Implications for environmental sustainability planning for the rapidly urbanizing summer capital of the Philippines. Landscape and Urban Planning, 116, 60–72. https://doi.org/10.1016/j.landurbplan.2013.04.008

Ewing, R., Lyons, T., Siddiq, F., Sabouri, S., Kiani, F., Hamidi, S., Choi, D., & Ameli, H. (2022). Growth management effectiveness: A literature review. Journal of Planning Literature, 37(3), 433–451. https://doi.org/10.1177/08854122221077457

Feng, Y., Liu, Y., Tong, X., Liu, M., & Deng, S. (2011). Modeling dynamic urban growth using cellular automata and particle swarm optimization rules. Landscape and Urban Planning, 102(3), 188–196. https://doi.org/10.1016/j.landurbplan.2011.04.004

Ghosh, A., Ng, K. T. W., & Karimi, N. (2023). An evaluation of the temporal and spatial evolution of waste facilities using a simplified spatial distance analytical framework. Environmental Development, 45, 100820. https://doi.org/10.1016/j.envdev.2023.100820

Grădinaru, S. R., Iojua, C. I., Onose, D. A., Gavrilidis, A. A., Puatru-Stupariu, I., Kienast, F., & Hersperger, A. M. (2015). Land abandonment as a precursor of built-up development at the sprawling periphery of former socialist cities. Ecological Indicators, 57, 305–313. https://doi.org/10.1016/j.ecolind.2015.05.009

Guzha, A. C., Rufino, M. C., Okoth, S., Jacobs, S., & Nóbrega, R. L. B. (2018). Impacts of land use and land cover change on surface runoff, discharge and low flows: Evidence from East Africa. Journal of Hydrology: Regional Studies, 15, 49–67. https://doi.org/10.1016/j.ejrh.2017.11.005

He, Q., Tan, R., Gao, Y., Zhang, M., Xie, P., & Liu, Y. (2018). Modeling urban growth boundary based on the evaluation of the extension potential: A case study of Wuhan city in China. Habitat International, 72, 57–65. https://doi.org/10.1016/j.habitatint.2016.11.006

He, Y., Ai, B., Yao, Y., & Zhong, F. (2015). Deriving urban dynamic evolution rules from self-adaptive cellular automata with multi-temporal remote sensing images. International Journal of Applied Earth Observation and Geoinformation, 38, 164–174. https://doi.org/10.1016/j.jag.2014.12.014

Li, X., & Yeh, A. G.-O. (2002). Neural-network-based cellular automata for simulating multiple land use changes using GIS. International Journal of Geographical Information Science, 16(4), 323–343. https://doi.org/10.1080/13658810210137004

Liladhar Rane, N., Achari, A., Hashemizadeh, A., Phalak, S., Pande, C. B., Giduturi, M., Khan, M. Y. A., Tolche, A. D., Tamam, N., Abbas, M., & others. (2023). Identification of sustainable urban settlement sites using interrelationship based multi-influencing factor technique and GIS. Geocarto International, 38(1), 2272670. https://doi.org/10.1080/10106049.2023.2272670

Liu, X., Li, X., Shi, X., Zhang, X., & Chen, Y. (2010). Simulating land-use dynamics under planning policies by integrating artificial immune systems with cellular automata. International Journal of Geographical Information Science, 24(5), 783–802. https://doi.org/10.1080/13658810903270551

Liu, X., Liang, X., Li, X., Xu, X., Ou, J., Chen, Y., Li, S., Wang, S., & Pei, F. (2017). A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landscape and Urban Planning, 168, 94–116. https://doi.org/10.1016/j.landurbplan.2017.09.019

Liu, Y., He, Q., Tan, R., Liu, Y., & Yin, C. (2016). Modeling different urban growth patterns based on the evolution of urban form: A case study from Huangpi, Central China. Applied Geography, 66, 109–118. https://doi.org/10.1016/j.apgeog.2015.11.012

Mantelas, L., Hatzichristos, T., & Prastacos, P. (2008). Modeling urban growth using fuzzy cellular automata. 11th AGILE International Conference on Geographic Information Science, Girona, Spain, 1-12. Retrieved from https://agile-gi.eu/images/conferences/2008/documents/60_doc.pdf

McDonald, R. I., Green, P., Balk, D., Fekete, B. M., Revenga, C., Todd, M., & Montgomery, M. (2011). Urban growth, climate change, and freshwater availability. Proceedings of the National Academy of Sciences, 108(15), 6312–6317. https://doi.org/10.1073/pnas.1011615108

Müller, K., Steinmeier, C., & Küchler, M. (2010). Urban growth along motorways in Switzerland. Landscape and Urban Planning, 98(1), 3–12. https://doi.org/10.1016/j.landurbplan.2010.07.004

Osman, T., Divigalpitiya, P., & Arima, T. (2016). Using the SLEUTH urban growth model to simulate the impacts of future policy scenarios on land use in the Giza Governorate, Greater Cairo Metropolitan region. International Journal of Urban Sciences, 20(3), 407–426. https://doi.org/10.1080/12265934.2016.1216327

Oum, T. H., & Park, J.-H. (2004). Multinational firms’ location preference for regional distribution centers: focus on the Northeast Asian region. Transportation Research Part E: Logistics and Transportation Review, 40(2), 101–121. https://doi.org/10.1016/S1366-5545(03)00036-X

Pribadi, D. O., Putra, A. S., & Rustiadi, E. (2015). Determining optimal location of new growth centers based on LGP--IRIO model to reduce regional disparity in Indonesia. The Annals of Regional Science, 54, 89–115. https://doi.org/10.1007/s00168-014-0647-8

Santé, I., García, A. M., Miranda, D., & Crecente, R. (2010). Cellular automata models for the simulation of real-world urban processes: A review and analysis. Landscape and Urban Planning, 96(2), 108–122. https://doi.org/10.1016/j.landurbplan.2010.03.001

Seto, K. C., Güneralp, B., & Hutyra, L. R. (2012). Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences, 109(40), 16083–16088. https://doi.org/10.1073/pnas.1211658109

Shahfahad, Talukdar, S., Naikoo, M. W., Rahman, A., Gagnon, A. S., Islam, A. R. M. T., & Mosavi, A. (2023). Comparative evaluation of operational land imager sensor on board landsat 8 and landsat 9 for land use land cover mapping over a heterogeneous landscape. Geocarto International, 38(1), 2152496. https://doi.org/10.1080/10106049.2022.2152496

Silva, E. A., & Clarke, K. C. (2002). Calibration of the SLEUTH urban growth model for Lisbon and Porto, Portugal. Computers, Environment and Urban Systems, 26(6), 525–552. https://doi.org/10.1016/S0198-9715(01)00014-X

Sunde, M. G., He, H. S., Zhou, B., Hubbart, J. A., & Spicci, A. (2014). Imperviousness Change Analysis Tool (I-CAT) for simulating pixel-level urban growth. Landscape and Urban Planning, 124, 104–108. https://doi.org/10.1016/j.landurbplan.2014.01.007

Uhl, J. H., Hunter, L. M., Leyk, S., Connor, D. S., Nieves, J. J., Hester, C., Talbot, C., & Gutmann, M. (2023). Place-level urban--rural indices for the United States from 1930 to 2018. Landscape and Urban Planning, 236, 104762. https://doi.org/10.1016/j.landurbplan.2023.104762

Wu, K., & Zhang, H. (2012). Land use dynamics, built-up land expansion patterns, and driving forces analysis of the fast-growing Hangzhou metropolitan area, eastern China (1978--2008). Applied Geography, 34, 137–145. https://doi.org/10.1016/j.apgeog.2011.11.006

Yang, X., Chen, R., & Zheng, X. Q. (2016). Simulating land use change by integrating ANN-CA model and landscape pattern indices. Geomatics, Natural Hazards and Risk, 7(3), 918–932. https://doi.org/10.1080/19475705.2014.1001797

Yasin, M. Y., Abdullah, J., Noor, N. M., Yusoff, M. M., & Noor, N. M. (2022). Landsat observation of urban growth and land use change using NDVI and NDBI analysis. IOP Conference Series: Earth and Environmental Science, 1067(1), 12037. https://doi.org/10.1088/1755-1315/1067/1/012037

Zha, Y., Gao, J., & Ni, S. (2003). Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing, 24(3), 583–594. https://doi.org/10.1080/01431160304987

Author Biographies

Emil Salim Rasyidi, Bosowa University

Jumadil, Bosowa University

Syafri, Bosowa University

Rahmawati Rahman, Bosowa University

Rusneni, Bosowa University

Hamsinah, Bosowa University

Muh. Khalil Jibran, Universitas Hasanuddin

License

Copyright (c) 2024 Emil Salim Rasyidi, Jumadil, Syafri, Rahmawati Rahman, Rusneni, Hamsinah, Muh. Khalil Jibran

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).