Bioelectrical Insight: Correlation Cell Count and Electrical Impedance of Whole Blood throughout Storage with an Impedance Analyzer Methode
DOI:
10.29303/jppipa.v10i8.7541Published:
2024-08-25Issue:
Vol. 10 No. 8 (2024): AugustKeywords:
Cell count, Electrical impedance, Storage timeResearch Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
Blood, a vital tissue comprising blood cells within the plasma matrix, plays a crucial role in transporting oxygen, nutrients, and functional components throughout the body. Insufficient blood levels can lead to disorders or life-threatening conditions, necessitating blood transfusions for those experiencing deficiencies. Blood banks store blood products to meet transfusion needs, emphasizing safety, donor health, patient conditions, cross-matching accuracy, and storage quality. Examining stored blood indicates an individual's physiological response to environmental changes, with quantitative and qualitative changes visible through whole blood cell count and impedance parameters. Electrical impedance spectroscopy, which measures these biological properties, shows that although blood cell count remains stable over 35 days, impedance characteristics change significantly. Analysis of the Nyquist Zriil plot reveals a consistent decrease in Zriil values, indicating reduced extracellular resistance (Res) over time. These impedance changes reflect alterations in blood morphology, providing crucial insights into the quality of stored blood. In conclusion, electrical impedance spectroscopy effectively monitors stored blood quality, detecting significant changes in extracellular resistance over extended storage periods. These findings underscore the importance of regular monitoring and proper management of stored blood to ensure its safety and effectiveness for transfusions.
References
Ain, K., Soelistiono, S., Wibowo, R. A., Muniroh, L., Anggono, T., & Sari, W. W. P. (2018). Design and Development of Device to measure Body Fat using Multi-frequency Bio-impedance Method. Journal of Physics: Conference Series, 1120, 012043. https://doi.org/10.1088/1742-6596/1120/1/012043
Antonacci, G., Williams, A., Smith, J., & Green, L. (2024). Study of Whole blood in Frontline Trauma (SWiFT): Implementation study protocol. BMJ Open, 14(2), e078953. https://doi.org/10.1136/bmjopen-2023-078953
Arts, L. P. A., & Van Den Broek, Egon. L. (2022). The fast continuous wavelet transformation (fCWT) for real-time, high-quality, noise-resistant time–frequency analysis. Nature Computational Science, 2(1), 47–58. https://doi.org/10.1038/s43588-021-00183-z
Asaad, S. M., & Maghdid, H. S. (2022). A Comprehensive Review of Indoor/Outdoor Localization Solutions in IoT era: Research Challenges and Future Perspectives. Computer Networks, 212, 109041. https://doi.org/10.1016/j.comnet.2022.109041
Branco, M. G., Mateus, C., Capelas, M. L., Pimenta, N., Santos, T., Mäkitie, A., Ganhão-Arranhado, S., Trabulo, C., & Ravasco, P. (2023). Bioelectrical Impedance Analysis (BIA) for the Assessment of Body Composition in Oncology: A Scoping Review. Nutrients, 15(22), 4792. https://doi.org/10.3390/nu15224792
Cap, A. P., Beckett, A., Benov, A., Borgman, M., Chen, J., Corley, J. B., Doughty, H., Fisher, A., Glassberg, E., Gonzales, R., Kane, S. F., Malloy, W. W., Nessen, S., Perkins, J. G., Prat, N., Quesada, J., Reade, M., Sailliol, A., Spinella, P. C., … Gurney, J. (2018). Whole blood transfusion. Military Medicine, 183(1), 44–51. https://doi.org/10.1093/milmed/usy120
Cappabianca, R., De Angelis, P., Fasano, M., Chiavazzo, E., & Asinari, P. (2023). An Overview on Transport Phenomena within Solid Electrolyte Interphase and Their Impact on the Performance and Durability of Lithium-Ion Batteries. Energies, 16(13), 5003. https://doi.org/10.3390/en16135003
Carrola, A., Romão, C. C., & Vieira, H. L. A. (2023). Carboxyhemoglobin (COHb): Unavoidable Bystander or Protective Player? Antioxidants, 12(6), 1198. https://doi.org/10.3390/antiox12061198
Chen, Y., Kang, Y., Zhao, Y., Wang, L., Liu, J., Li, Y., Liang, Z., He, X., Li, X., Tavajohi, N., & Li, B. (2021). A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards. Journal of Energy Chemistry, 59, 83–99. https://doi.org/10.1016/j.jechem.2020.10.017
Constable, C., Coowar, F., Copley, M., Kendrick, E., Dancer, C., & Hasa, I. (2024). Influence of Particle Size and Mass Loading of Hard Carbon on Sodium Ion Battery Rate Performance in Industrially Relevant Full Cells. Journal of The Electrochemical Society, 171(2), 023506. https://doi.org/10.1149/1945-7111/ad2590
De Beukelaar, T. T., & Mantini, D. (2023). Monitoring Resistance Training in Real Time with Wearable Technology: Current Applications and Future Directions. Bioengineering, 10(9), 1085. https://doi.org/10.3390/bioengineering10091085
Geekiyanage, N., Sauret, E., Saha, S., Flower, R., & Gu, Y. (2020). Modelling of Red Blood Cell Morphological and Deformability Changes during In-Vitro Storage. Applied Sciences, 10(9), 3209. https://doi.org/10.3390/app10093209
Günter, F. J., Habedank, J. B., Schreiner, D., Neuwirth, T., Gilles, R., & Reinhart, G. (2018). Introduction to Electrochemical Impedance Spectroscopy as a Measurement Method for the Wetting Degree of Lithium-Ion Cells. Journal of The Electrochemical Society, 165(14), A3249–A3256. https://doi.org/10.1149/2.0081814jes
Gupta, A., Bala, G., Suri, V., Dhingra, H., Chhabra, S., & Gupta, S. (2019). Quality Analysis of Haematological Parameters of Whole Blood, Packed Red Blood Cells and Platelet Concentrate: A Study from Tertiary Care Hospital of Northern India. Journal of Clinical and Diagnostic Research, 3800, 10–13. https://doi.org/10.7860/jcdr/2019/42408.13322
Hess, L. H., Fulik, N., Röhner, J., Zhang, E., Kaskel, S., Brunner, E., & Balducci, A. (2021). The role of diffusion processes in the self-discharge of electrochemical capacitors. Energy Storage Materials, 37, 501–508. https://doi.org/10.1016/j.ensm.2021.02.007
Huisjes, R., Bogdanova, A., Van Solinge, W. W., Schiffelers, R. M., Kaestner, L., & Van Wijk, R. (2018). Squeezing for Life – Properties of Red Blood Cell Deformability. Frontiers in Physiology, 9, 656. https://doi.org/10.3389/fphys.2018.00656
Huynh, T., Jafari, R., & Chung, W.-Y. (2018). An Accurate Bioimpedance Measurement System for Blood Pressure Monitoring. Sensors, 18(7), 2095. https://doi.org/10.3390/s18072095
Ichikawa, J., Kouta, M., Oogushi, M., & Komori, M. (2022). Effects of room temperature and cold storage on the metabolic and haemostatic properties of whole blood for acute normovolaemic haemodilution. PLOS ONE, 17(5), e0267980. https://doi.org/10.1371/journal.pone.0267980
Jacobs, M. R., Zhou, B., Tayal, A., & Maitta, R. W. (2024). Bacterial Contamination of Platelet Products. Microorganisms, 12(2), 258. https://doi.org/10.3390/microorganisms12020258
Jafarinia, A., Badeli, V., Krispel, T., Melito, G. M., Brenn, G., Reinbacher-Köstinger, A., Kaltenbacher, M., & Hochrainer, T. (2024). Modeling Anisotropic Electrical Conductivity of Blood: Translating Microscale Effects of Red Blood Cell Motion into a Macroscale Property of Blood. Bioengineering, 11(2), 147. https://doi.org/10.3390/bioengineering11020147
Kondoh, H., Kameda, M., & Yanagida, M. (2021). Whole blood metabolomics in aging research. International Journal of Molecular Sciences, 22(1), 1–13. https://doi.org/10.3390/ijms22010175
Litvinov, R. I., Evtugina, N. G., Peshkova, A. D., Safiullina, S. I., Andrianova, I. A., Khabirova, A. I., Nagaswami, C., Khismatullin, R. R., Sannikova, S. S., & Weisel, J. W. (2021). Altered platelet and coagulation function in moderate-to-severe COVID-19. Scientific Reports, 11(1), 16290. https://doi.org/10.1038/s41598-021-95397-6
Livshits, L., Barshtein, G., Arbell, D., Gural, A., Levin, C., & Guizouarn, H. (2021). Do We Store Packed Red Blood Cells under “Quasi-Diabetic” Conditions? Biomolecules, 11(7), 992. https://doi.org/10.3390/biom11070992
Long, B., & Koyfman, A. (2016). Red Blood Cell Transfusion in the Emergency Department. Journal of Emergency Medicine, 51(2), 120–130. https://doi.org/10.1016/j.jemermed.2016.04.010
Mindukshev, I., Fock, E., Dobrylko, I., Sudnitsyna, J., Gambaryan, S., & Panteleev, M. A. (2022). Platelet Hemostasis Reactions at Different Temperatures Correlate with Intracellular Calcium Concentration. International Journal of Molecular Sciences, 23(18), 10667. https://doi.org/10.3390/ijms231810667
Niebur, E. (2010). Electrical properties of cell membranes. Scholarpedia, 3(6), 7166. https://doi.org/10.4249/scholarpedia.7166
Packebush, M. H., Sanchez-Martinez, S., Biswas, S., Kc, S., Nguyen, K. H., Ramirez, J. F., Nicholson, V., & Boothby, T. C. (2023). Natural and engineered mediators of desiccation tolerance stabilize Human Blood Clotting Factor VIII in a dry state. Scientific Reports, 13(1), 4542. https://doi.org/10.1038/s41598-023-31586-9
Pardeshi, A. (2023). Study of correlation between blood haemoglobin levels and blood groups in the age group 18-25 years. International Journal of Research in Medical Sciences, 12(1), 99–102. https://doi.org/10.18203/2320-6012.ijrms20233981
Pawlik-Sobecka, L., Sołkiewicz, K., Kokot, I., Kiraga, A., Płaczkowska, S., Schlichtinger, A., & Kratz, E. (2020). The Influence of Serum Sample Storage Conditions on Selected Laboratory Parameters Related to Oxidative Stress: A Preliminary Study. Diagnostics, 10(1), 51. https://doi.org/10.3390/diagnostics10010051
Quist, J. R., Rud, C. L., Brantlov, S., Ward, L. C., Dahl Baunwall, S. M., & Hvas, C. L. (2024). Bioelectrical impedance analysis as a clinical marker of health status in adult patients with benign gastrointestinal disease: A systematic review. Clinical Nutrition ESPEN, 59, 387–397. https://doi.org/10.1016/j.clnesp.2023.12.145
Rahmawati, E., Santoso, D. R., Noor, J. A. F., & Nadhir, A. (2022). Electrical impedance analysis of NaCl and CaCl2solutions based on equivalent electric circuit. Journal of Physics: Conference Series, 2165(1), 2–9. https://doi.org/10.1088/1742-6596/2165/1/012025
Ramirez‐Arcos, S., Garcia‐Otalora, M., McDonald, C., & ISBT Transfusion‐Transmitted Infectious Diseases Working Party, Subgroup on Bacteria. (2023). Microbiological environmental contamination in the blood supply chain: An international survey by the bacterial subgroup of the ISBT Transfusion‐Transmitted Infectious Diseases Working Party. Vox Sanguinis, 118(8), 656–665. https://doi.org/10.1111/vox.13476
Tran, L. N. T., González-Fernández, C., & Gomez-Pastora, J. (2024). Impact of Different Red Blood Cell Storage Solutions and Conditions on Cell Function and Viability: A Systematic Review. Biomolecules, 14(7), 813. https://doi.org/10.3390/biom14070813
Van Buren, T., Arwatz, G., & Smits, A. J. (2020). A simple method to monitor hemolysis in real time. Scientific Reports, 10(1), 2–6. https://doi.org/10.1038/s41598-020-62041-8
Vogt, A.-C. S., Arsiwala, T., Mohsen, M., Vogel, M., Manolova, V., & Bachmann, M. F. (2021). On Iron Metabolism and Its Regulation. International Journal of Molecular Sciences, 22(9), 4591. https://doi.org/10.3390/ijms22094591
Walski, T., Grzeszczuk-Kuć, K., Gałecka, K., Trochanowska-Pauk, N., Bohara, R., Czerski, A., Szułdrzyński, K., Królikowski, W., Detyna, J., & Komorowska, M. (2022). Near-infrared photobiomodulation of blood reversibly inhibits platelet reactivity and reduces hemolysis. Scientific Reports, 12(1), 4042. https://doi.org/10.1038/s41598-022-08053-y
Weisel, J. W., & Litvinov, R. I. (2019). Red blood cells: The forgotten player in hemostasis and thrombosis. Journal of Thrombosis and Haemostasis, 17(2), 271–282. https://doi.org/10.1111/jth.14360
Welsh, J. A., Goberdhan, D. C. I., O’Driscoll, L., Buzas, E. I., Blenkiron, C., Bussolati, B., Cai, H., Di Vizio, D., Driedonks, T. A. P., Erdbrügger, U., Falcon‐Perez, J. M., Fu, Q., Hill, A. F., Lenassi, M., Lim, S. K., Mahoney, M. G., Mohanty, S., Möller, A., Nieuwland, R., … Witwer, K. W. (2024). Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. Journal of Extracellular Vesicles, 13(2), e12404. https://doi.org/10.1002/jev2.12404
Widodo, C. S., Santosa, D. R., Juswono, U. P., Retnaningtyas, E., & Wijaya, H. S. (2024). Electrical Impedance Study on Whole Blood Cells and Red Blood Cells during Storage in Refrigerator. Trends in Sciences, 21(2). https://doi.org/10.48048/tis.2024.7267
Zhbanov, A., & Yang, S. (2015). Effects of Aggregation on Blood Sedimentation and Conductivity. PLOS ONE, 10(6), e0129337. https://doi.org/10.1371/journal.pone.0129337
Author Biographies
Viranita Qurotul Aini, Universitas Brawijaya
Chomsin S. Widodo, Universitas Brawijaya
Ekowati Retnaningtyas, Politeknik Kesehatan Kementrian Kesehatan Malang
License
Copyright (c) 2024 Viranita Qurotul Aini, Chomsin S. Widodo, Ekowati Retnaningtyas
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).