Vol. 10 No. 10 (2024): October
Open Access
Peer Reviewed

Spatially Varying Regression Coefficient Model For Predicting Stunting Hotspots In Indonesia

Authors

Ukhti Nurfajriah Sasmita Ijonu , I Gede Nyoman Mindra Jaya , Restu Arisanti

DOI:

10.29303/jppipa.v10i10.8270

Published:

2024-10-30

Downloads

Abstract

Stunting is a significant issue, particularly in the context of Indonesia. Identifying crucial risk factors is crucial for mitigating and developing effective strategies to control stunting. A Bayesian approach was employed to develop a regression model that incorporates spatial variation, allowing risk factors to vary across different districts and cities. The aim was to obtain the most optimal regression model. The analysis revealed that the impact of immunization varies across districts and cities in Indonesia when it comes to explaining the differences in stunting prevalence. The hotspot prediction results indicate that most urban districts in Indonesia remain hotspot areas, with a stunting risk exceeding 20%. The government must ensure the effective implementation of the immunization program in order to mitigate the prevalence of stunting in Indonesia. The novelty of this research lies in the use of Bayesian approaches to spatial analysis in identifying and understanding stunting risk factors as well as the prediction of stunting hotspots in Indonesia. This approach provides in-depth insight into local variations in the prevalence of stunting and the effectiveness of health interventions, which supports more effective and targeted policy development.

References

Aridiyah, F. O., Rohmawati, N., & Ririanty, M. (2015). Faktor-faktor yang Mempengaruhi Kejadian Stunting pada Anak Balita di Wilayah Pedesaan dan Perkotaan (The Factors Affecting Stunting on Toddlers in Rural and Urban Areas). Pustaka Kesehatan, 3(1), 163–170. Retrieved from https://jurnal.unej.ac.id/index.php/JPK/article/view/2520

Congdon, P. (2014). Bayesian spatial statistical modeling. In Handbook of Regional Science (pp. 1419–1434). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-23430-9_79

Cressie, Noel. (1993). Statistics for spatial data. Revised ed. John Wiley & Sons.

Jaya, I. G. N. M., & Folmer, H. (2019a). Bayesian spatiotemporal mapping of relative dengue disease risk in Bandung. Journal of Geographical Systems, 22(1), 105–142. https://link.springer.com/article/10.1007/s10109-019-00311-4

Jaya, I. G. N. M., & Folmer, H. (2019b). Bayesian spatiotemporal mapping of relative dengue disease risk in Bandung, Indonesia. Journal of Geographical Systems, 22(1), 105–142. https://doi.org/10.1007/s10109-019-00311-4

La Ode Alifariki, S. Kep. , Ns. , M. K. (2020). Gizi Anak dan Stunting (S. Kep. M. Ns. Heriviyatno Julika Siagian & S. S. M. K. Mariany, Eds.). LeutikaPrio.

Nadhiroh, S. R., & Ni’mah, K. (2010). Faktor yang berhubungan dengan kejadian. Media Gizi Indonesia, 1, 13–19.

Paudel, R., Pradhan, B., Wagle, R. R., Pahari, D. P., & Onta, S. R. (2012). Risk factors for stunting among children: A community based case control study in Nepal. Kathmandu University Medical Journal, 10(39), 18–24. https://doi.org/10.3126/kumj.v10i3.8012

Putri, R., & Nuzuliana, R. (2020). Penatalaksanaan efektif dalam rangka peningkatan pertumbuhan anak pada kasus stunting. Jurnal Kesehatan Vokasional, 5(2), 110–123. http://dx.doi.org/10.22146/jkesvo.54930

qar Bhutta, Z. A., Ahmed, T., Black, R. E., Cousens, S., Dewey, K., Giugliani, E., Haider, B. A., Kirkwood, B., Morris, S. S., & S Sachdev, H. P. (2008). Maternal and Child Undernutrition 3 What works? Interventions for maternal and child undernutrition and survival. Www.Thelancet.Com, 371. https://doi.org/10.1016/S0140

Setiyabudi, R. (2019). Stunting, risk factor, effect and prevention. Medisains, 17(2), 24–25. Retrieved from https://juke.kedokteran.unila.ac.id/index.php/agro/article/view/1999

Sutarto, M. D., & Indriyani, R. (2018). Stunting, Faktor Resiko dan Pencegahannya. J Agromedicine, 5. http://dx.doi.org/10.30595/medisains.v17i2.5656

Umeta M, West CE, Verhoef H, Haidar J, & Hautvast J. (2003). Actors Associated with Stunting in Infants Aged 5-11 Months in the Dodota-Sire District, Rural Ethiopia. Journal Nutrition, 133, 1064–1069. https://doi.org/10.1093/jn/133.4.1064

Van de Schoot, R., Depaoli, S., King, R., Kramer, B., Märtens, K., Tadesse, M. G., & Yau, C. (2021). Bayesian statistics and modelling. Nature Reviews Methods Primers, 1(1). https://doi.org/10.1038/s43586-020-00001-2

Wagenmakers, E.-J., Lee, M., Lodewyckx, T., & Iverson, G. J. (2008). Bayesian Versus Frequentist Inference. In H. Hoijtink. I. Klugkist. & P. A. Boelen (Eds.). Bayesian Evaluation of Informative Hypotheses. Springer.

WHO. (2013). Childhood Stunting: Context, Causes and Consequences WHO Conceptual Framework. Who, 9(2). Retrieved from https://www.who.int/publications/m/item/childhood-stunting-context-causes-and-consequences-framework

Author Biographies

Ukhti Nurfajriah Sasmita Ijonu, Universitas Padjajaran

Author Origin : Indonesia

I Gede Nyoman Mindra Jaya, Padjadjaran University

Author Origin : Indonesia

Restu Arisanti, Padjadjaran University

Author Origin : Indonesia

Downloads

Download data is not yet available.

How to Cite

Ijonu, U. N. S., Jaya, I. G. N. M., & Arisanti, R. (2024). Spatially Varying Regression Coefficient Model For Predicting Stunting Hotspots In Indonesia. Jurnal Penelitian Pendidikan IPA, 10(10), 7748–7755. https://doi.org/10.29303/jppipa.v10i10.8270