Spatially Varying Regression Coefficient Model For Predicting Stunting Hotspots In Indonesia
DOI:
10.29303/jppipa.v10i10.8270Published:
2024-10-30Issue:
Vol. 10 No. 10 (2024): OctoberResearch Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
Stunting is a significant issue, particularly in the context of Indonesia. Identifying crucial risk factors is crucial for mitigating and developing effective strategies to control stunting. A Bayesian approach was employed to develop a regression model that incorporates spatial variation, allowing risk factors to vary across different districts and cities. The aim was to obtain the most optimal regression model. The analysis revealed that the impact of immunization varies across districts and cities in Indonesia when it comes to explaining the differences in stunting prevalence. The hotspot prediction results indicate that most urban districts in Indonesia remain hotspot areas, with a stunting risk exceeding 20%. The government must ensure the effective implementation of the immunization program in order to mitigate the prevalence of stunting in Indonesia. The novelty of this research lies in the use of Bayesian approaches to spatial analysis in identifying and understanding stunting risk factors as well as the prediction of stunting hotspots in Indonesia. This approach provides in-depth insight into local variations in the prevalence of stunting and the effectiveness of health interventions, which supports more effective and targeted policy development.
References
Aridiyah, F. O., Rohmawati, N., & Ririanty, M. (2015). Faktor-faktor yang Mempengaruhi Kejadian Stunting pada Anak Balita di Wilayah Pedesaan dan Perkotaan (The Factors Affecting Stunting on Toddlers in Rural and Urban Areas). Pustaka Kesehatan, 3(1), 163–170. Retrieved from https://jurnal.unej.ac.id/index.php/JPK/article/view/2520
Congdon, P. (2014). Bayesian spatial statistical modeling. In Handbook of Regional Science (pp. 1419–1434). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-23430-9_79
Cressie, Noel. (1993). Statistics for spatial data. Revised ed. John Wiley & Sons.
Jaya, I. G. N. M., & Folmer, H. (2019a). Bayesian spatiotemporal mapping of relative dengue disease risk in Bandung. Journal of Geographical Systems, 22(1), 105–142. https://link.springer.com/article/10.1007/s10109-019-00311-4
Jaya, I. G. N. M., & Folmer, H. (2019b). Bayesian spatiotemporal mapping of relative dengue disease risk in Bandung, Indonesia. Journal of Geographical Systems, 22(1), 105–142. https://doi.org/10.1007/s10109-019-00311-4
La Ode Alifariki, S. Kep. , Ns. , M. K. (2020). Gizi Anak dan Stunting (S. Kep. M. Ns. Heriviyatno Julika Siagian & S. S. M. K. Mariany, Eds.). LeutikaPrio.
Nadhiroh, S. R., & Ni’mah, K. (2010). Faktor yang berhubungan dengan kejadian. Media Gizi Indonesia, 1, 13–19.
Paudel, R., Pradhan, B., Wagle, R. R., Pahari, D. P., & Onta, S. R. (2012). Risk factors for stunting among children: A community based case control study in Nepal. Kathmandu University Medical Journal, 10(39), 18–24. https://doi.org/10.3126/kumj.v10i3.8012
Putri, R., & Nuzuliana, R. (2020). Penatalaksanaan efektif dalam rangka peningkatan pertumbuhan anak pada kasus stunting. Jurnal Kesehatan Vokasional, 5(2), 110–123. http://dx.doi.org/10.22146/jkesvo.54930
qar Bhutta, Z. A., Ahmed, T., Black, R. E., Cousens, S., Dewey, K., Giugliani, E., Haider, B. A., Kirkwood, B., Morris, S. S., & S Sachdev, H. P. (2008). Maternal and Child Undernutrition 3 What works? Interventions for maternal and child undernutrition and survival. Www.Thelancet.Com, 371. https://doi.org/10.1016/S0140
Setiyabudi, R. (2019). Stunting, risk factor, effect and prevention. Medisains, 17(2), 24–25. Retrieved from https://juke.kedokteran.unila.ac.id/index.php/agro/article/view/1999
Sutarto, M. D., & Indriyani, R. (2018). Stunting, Faktor Resiko dan Pencegahannya. J Agromedicine, 5. http://dx.doi.org/10.30595/medisains.v17i2.5656
Umeta M, West CE, Verhoef H, Haidar J, & Hautvast J. (2003). Actors Associated with Stunting in Infants Aged 5-11 Months in the Dodota-Sire District, Rural Ethiopia. Journal Nutrition, 133, 1064–1069. https://doi.org/10.1093/jn/133.4.1064
Van de Schoot, R., Depaoli, S., King, R., Kramer, B., Märtens, K., Tadesse, M. G., & Yau, C. (2021). Bayesian statistics and modelling. Nature Reviews Methods Primers, 1(1). https://doi.org/10.1038/s43586-020-00001-2
Wagenmakers, E.-J., Lee, M., Lodewyckx, T., & Iverson, G. J. (2008). Bayesian Versus Frequentist Inference. In H. Hoijtink. I. Klugkist. & P. A. Boelen (Eds.). Bayesian Evaluation of Informative Hypotheses. Springer.
WHO. (2013). Childhood Stunting: Context, Causes and Consequences WHO Conceptual Framework. Who, 9(2). Retrieved from https://www.who.int/publications/m/item/childhood-stunting-context-causes-and-consequences-framework
Author Biographies
Ukhti Nurfajriah Sasmita Ijonu, Universitas Padjajaran
I Gede Nyoman Mindra Jaya, Padjadjaran University
Restu Arisanti, Padjadjaran University
License
Copyright (c) 2024 Ukhti Nurfajriah Sasmita Ijonu, I Gede Nyoman Mindra Jaya, Restu Arisanti
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).