Implementation of the Gauss-Kronrod Quadrature Method (G7, K15) on 2D Gravity Anomaly Modeling in Basins with a Polynomial Variation of Density Distribution with Depth

Authors

Zulhendra , Wahyu Srigutomo , Cahyo Aji Hapsoro

DOI:

10.29303/jppipa.v10i8.8493

Published:

2024-08-25

Issue:

Vol. 10 No. 8 (2024): August

Keywords:

Basin, Gauss-Kronrod quadrature, Gravity anomaly, Variation of density

Research Articles

Downloads

How to Cite

Zulhendra, Srigutomo, W., & Hapsoro, C. A. (2024). Implementation of the Gauss-Kronrod Quadrature Method (G7, K15) on 2D Gravity Anomaly Modeling in Basins with a Polynomial Variation of Density Distribution with Depth. Jurnal Penelitian Pendidikan IPA, 10(8), 6252–6259. https://doi.org/10.29303/jppipa.v10i8.8493

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

Forward modeling of 2D gravity anomalies, considering density contrasts that vary polynomially with depth, was performed to examine basin structures. This process involved two main stages: deriving analytical formulas and executing numerical integration. The Gauss-Kronrod Quadrature Method, utilizing 7 Gauss points and 15 Kronrod points, was employed to precisely compute these integrals. Initial modeling applied to theoretical basement scenarios with fixed density contrasts showed gravity anomalies that accurately reflected the curvature of the basement. To validate the approach, it was then applied to real-world cases including the Sebastian Vizcaino Basin, San Jacinto Graben, and Sayula Basin. By incorporating suitable density contrasts, modeling lengths, and basement curvature shapes, the results revealed that both fixed-density and depth-variable density models produced gravity anomalies with patterns consistent with the actual basement curvature. These findings validate the modeling technique’s effectiveness in representing real geological features accurately. The study confirms that the Gauss-Kronrod Quadrature Method (G7, K15) is robust for analyzing 2D gravity anomalies, providing a reliable tool for understanding the influence of varying density contrasts on gravity responses.

References

Abbott, R. E., & Louie, J. N. (2000). Depth to bedrock using gravimetry in the Reno and Carson City, Nevada, area basins. Geophysics, 65(2), 340–350. https://doi.org/10.1190/1.1444730

Abdoh, A., Cowan, D., & Pilkington, M. (1990). 3D Gravity Inversion of The Cheshire Basin. Geophysical Prospecting, 38(8), 999–1011. https://doi.org/10.1111/j.1365-2478.1990.tb01887.x

Alqahtani, H., Borges, C. F., Djukić, D. L., Djukić, R. M., Reichel, L., & Spalević, M. M. (2024). Computation of pairs of related Gauss-type quadrature rules. Applied Numerical Mathematics. https://doi.org/10.1016/j.apnum.2024.03.003

Annecchione, M. A., Chouteau, M., & Keating, P. (2001). Gravity interpretation of bedrock topography: the case of the Oak Ridges Moraine, southern Ontario, Canada. Journal of Applied Geophysics, 47(1), 63–81. https://doi.org/10.1016/S0926-9851(01)00047-7

Bott, M. H. P. (1960). The use of rapid digital computing methods for direct gravity interpretation of sedimentary basins. Geophysical Journal International, 3(1), 63–67. https://doi.org/10.1111/j.1365-246X.1960.tb00065.x

Cai, H., & Zhdanov, M. (2015). Application of Cauchy-type integrals in developing effective methods for depth-to-basement inversion of gravity and gravity gradiometry data. Geophysics, 80(2), 81– 94. https://doi.org/10.1190/geo2014-0332.1

Chakravarthi, V., Kumar, M. P., Ramamma, B., & Sastry, S. R. (2016). Automatic gravity modeling of sedimentary basins by means of polygonal source geometry and exponential density contrast variation: Two space domain based algorithms. Journal of Applied Geophysics, 124, 54–61. https://doi.org/10.1016/j.jappgeo.2015.11.007

Chakravarthi, V., & Ramamma, B. (2015). Determination of sedimentary basin basement depth: a space domain based gravity inversion using exponential density function. Acta Geophysica, 63, 1066–1079. https://doi.org/10.1515/acgeo-2015-0027

Chakravarthi, V., & Sundararajan, N. (2005). Gravity modeling of 21/2-D sedimentary basins—a case of variable density contrast. Computers & Geosciences, 31(7), 820–827. https://doi.org/10.1016/j.cageo.2005.01.018

Chakravarthi, V., & Sundararajan, N. (2007). INV2P5DSB—A code for gravity inversion of 2.5-D sedimentary basins using depth dependent density. Computers & Geosciences, 33(4), 449–456. https://doi.org/10.1016/j.cageo.2006.06.010

Chappell, A., & Kusznir, N. (2008). An algorithm to calculate the gravity anomaly of sedimentary basins with exponential density‐depth relationships. Geophysical Prospecting, 56(2), 249–258. https://doi.org/10.1111/j.1365-2478.2007.00674.x

Cordell, L. (1973). Gravity analysis using an exponential density-depth function—San Jacinto Graben, California. Geophysics, 38(4), 684–690. https://doi.org/10.1190/1.1440367

Cowie, P. A., & Karner, G. D. (1990). Gravity effect of sediment compaction: examples from the North Sea and the Rhine Graben. Earth and Planetary Science Letters, 99(1–2), 141–153. https://doi.org/10.1016/0012-821X(90)90078-C

D’Urso, M. G. (2015). The gravity anomaly of a 2D polygonal body having density contrast given by polynomial functions. Surveys in Geophysics, 36(3), 391–425. https://doi.org/10.1007/s10712-017-9411-9

Florio, G. (2020). The estimation of depth to basement under sedimentary basins from gravity data: Review of approaches and the ITRESC method, with an application to the Yucca Flat Basin (Nevada. Surveys in Geophysics, 41(5), 935–961. https://doi.org/10.1007/s10712-020-09601-9

García-Abdeslem, J. (1996). GL2D: A Fortran program to compute the gravity anomaly of a 2-d prism where density varies as a function of depth. Computers & Geosciences, 22(7), 823–826. https://doi.org/10.1016/0098-3004(96)00020-9

García-Abdeslem, J. (2003). 2D modeling and inversion of gravity data using density contrast varying with depth and source–basement geometry described by the Fourier series. Geophysics, 68(6), 1909–1916. https://doi.org/10.1190/1.1635044

García‐Abdeslem, J., Romo, J. M., Gómez‐Treviño, E., Ramírez‐Hernández, J., Esparza‐Hernández, F. J., & Flores‐Luna, C. F. (2005). A constrained 2D gravity model of the sebastián vizcaíno basin. Geophysical Prospecting, 53(6), 755–765. https://doi.org/10.1111/j.1365-2478.2005.00510.x

Granser, H. (1987). Three‐dimensional interpretation of gravity data from sedimentary basins using an exponential density‐depth function. Geophysical Prospecting, 35(9), 1030–1041. https://doi.org/10.1111/j.1365-2478.1987.tb00858.x

Himi, M., Tapias, J., Benabdelouahab, S., Salhi, A., Rivero, L., Elgettafi, M., & Casas, A. (2017). Geophysical characterization of saltwater intrusion in a coastal aquifer: the case of Martil-Alila plain (North Morocco. Journal of African Earth Sciences, 126, 136–147. https://doi.org/10.1016/j.jafrearsci.2016.11.011

İşseven, T., Aydın, N. G., & Arslan, M. S. (2024). 2D modelling the depth of the southeastern Thrace Basin by using Bouguer gravity anomalies. Acta Geophysica, 72(2), 849–860. https://doi.org/10.1007/s11600-023-01140-2

Kronrod, A. S. (1965). Nodes and weights of quadrature formulas. New York: Sixteen-place tables Consultants Bureau.

Kwok, Y. K. (1991). Contour integrals for gravity computation of horizontal 212-D bodies with variable density. Applied Mathematical Modelling, 15(2), 98–103. https://doi.org/10.1016/0307-904X(91)90017-J

Larasati, N. E., Laesanpura, A., & Sugianto, A. (2023). Integrative Analysis of the Geothermal Structure in Kepahiang: Insights from Magnetotelluric, Gravity, and Remote Sensing Techniques. Jurnal Penelitian Pendidikan, 9(8), 5971–5978. https://doi.org/10.29303/jppipa.v9i8.4576

Laurie, D. (1997). Calculation of Gauss-Kronrod quadrature rules. Mathematics of Computation, 66(219), 1133–1145. Retrieved from https://www.ams.org/journals/mcom/1997-66-219/S0025-5718-97-00861-2/

Lekula, M., Lubczynski, M. W., & Shemang, E. M. (2018). Hydrogeological conceptual model of large and complex sedimentary aquifer systems–Central Kalahari Basin. In Physics and Chemistry of the Earth, Parts A/B/C (Vol. 106, pp. 47–62). https://doi.org/10.1016/j.pce.2018.05.006

Litinsky, V. A. (1989). Concept of effective density: Key to gravity depth determinations for sedimentary basins. Geophysics, 54(11), 1474–1482. https://doi.org/10.1190/1.1442611

Mallesh, K., Chakravarthi, V., & Ramamma, B. (2019). 3D gravity analysis in the spatial domain: Model simulation by multiple polygonal cross-sections coupled with exponential density contrast. Pure and Applied Geophysics, 176, 2497–2511. https://doi.org/10.1007/s00024-019-02103-9

Matti, J. C., & Morton, D. M. (1993). Paleogeographic evolution of the San Andreas fault in southern California: A reconstruction based on a new cross-fault correlation. https://doi.org/10.1130/MEM178-p107

Notaris, S. E. (2016). Gauss-Kronrod quadrature formulae-a survey of fifty years of research. Electronic Transactions on Numerical Analysis, 45, 371–404. Retrieved from https://etna.math.kent.edu/vol.45.2016/pp371-404.dir/pp371-404.pdf

Oishi, Y., & Sakamoto, N. (2017). Numerical computational improvement of the stable-manifold method for nonlinear optimal control. IFAC-PapersOnLine, 50(1), 5103–5108. https://doi.org/10.1016/j.ifacol.2017.08.777

Oksum, E. (2021). Grav3CH_inv: A GUI-based MATLAB code for estimating the 3-D basement depth structure of sedimentary basins with vertical and horizontal density variation. Computers & Geosciences, 155, 104856. https://doi.org/10.1016/j.cageo.2021.104856

Rao, D. B. (1990). Analysis of gravity anomalies of sedimentary basins by an asymmetrical trapezoidal model with quadratic density function. Geophysics, 55(2), 226–231. https://doi.org/10.1190/1.1442830

Roy, A., & Wu, L. (2023). Generalized Gauss-FFT 3D forward gravity modeling for irregular topographic mass having any 3D variable density contrast. Computers & Geosciences, 172, 105297. https://doi.org/10.1016/j.cageo.2023.105297

Silalahi, M. T., Dahrin, D., Abdurrahman, D., & Tohari, A. (2023). Identification of Liquefaction-Potential Zones Using the Gravity Method in Lolu Village Central Sulawesi. Jurnal Penelitian Pendidikan IPA, 9(8), 6206–6212. https://doi.org/10.29303/jppipa.v9i8.4830

Silva, J. B., Costa, D. C., & Barbosa, V. C. (2006). Gravity inversion of basement relief and estimation of density contrast variation with depth. Geophysics, 71(5), 51– 58. https://doi.org/10.1190/1.2236383

Srigutomo, W., Santurima, S., Hapsoro, C. A., Anwar, H., & Djaja, I. G. P. F. S. (2018). Implementation of Two-point Quadrature Gauss-Legendre Method on 2D Gravity Anomaly Modeling in Basins with Density Distribution varied Polynomially as a function of Depth. Jurnal Geofisika, 16(2), 11–18. https://doi.org/10.36435/jgf.v16i2.51

Tenzer, R., & Gladkikh, V. (2014). Assessment of density variations of marine sediments with ocean and sediment depths. The Scientific World Journal, 2(1), 823296. https://doi.org/10.1155/2014/823296

Valdez, F., Emphoux, J. P., Acosta, R., Ramírez, S., Reveles, J., & Schöndube, O. (2006). Late Formative archaeology in the Sayula Basin of southern Jalisco. Ancient Mesoamerica, 17(2), 297–311. https://doi.org/10.1017/S0956536106060147

Author Biographies

Zulhendra, Universitas Negeri Padang

Wahyu Srigutomo, Institut Teknologi Bandung, Bandung

Cahyo Aji Hapsoro, Universitas Negeri Semarang, Malang

License

Copyright (c) 2024 Zulhendra, Wahyu Srigutomo, Cahyo Aji Hapsoro

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).