Analysis of the Distribution of Carbon Monoxide Gas and Nitrogen Dioxide Gas and Urban Heat Island (UHI) Based on Multi-Temporal Satellite Data During the Implementation of the Covid-19

Authors

Anshar Vahreza , Muhammad Isa , Nasrullah Zaini

DOI:

10.29303/jppipa.v10i9.8593

Published:

2024-09-25

Issue:

Vol. 10 No. 9 (2024): September

Keywords:

Carbon monoxide gas, Covid-19, Nitrogen dioxide gas, Satellite data

Research Articles

Downloads

How to Cite

Vahreza, A., Isa, M., & Zaini, N. (2024). Analysis of the Distribution of Carbon Monoxide Gas and Nitrogen Dioxide Gas and Urban Heat Island (UHI) Based on Multi-Temporal Satellite Data During the Implementation of the Covid-19. Jurnal Penelitian Pendidikan IPA, 10(9), 6790–6797. https://doi.org/10.29303/jppipa.v10i9.8593

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

The research aims to determine the distribution and concentration levels of CO and NO2 gases based on Sentinel-5P Satellite Image processing and UHI levels based on Landsat 8 Image processing during the implementation of Covid-19 Large-Scale Social Restrictions (PSBB) in Pekanbaru City. Data processing begins by extracting CO and NO2 gas data as well as Landsat 8 imagery via cloud computing on Google Earth Engine (GEE). The PSBB policy in Pekanbaru City came into effect in 2020. The PSBB policy will limit community activities, which will affect the concentration of CO and NO2 gases as well as UHI. The research results show that before the 2019 Covid-19 PSBB the respective concentrations of CO and NO2 gases were (CO: 4.16 x 10-3 mol/m2 – 4.70 x 10-3 mol/m2) and (NO2: 4, 16 x 10-5 mol/m2 – 5.68 x 10-5 mol/m2) with a UHI temperature of 34.23 0C. Then, when the PSBB was implemented in 2020, there was a decrease in the concentration of CO and NO2 gases to (CO: 2.87 x 10-3 mol/m2 – 3.20 x 10-3 mol/m2) and (NO2: 2.98 x 10-5 mol/m2 – 5.28 x 10-5 mol/m2) with the UHI temperature decreasing to 30.24 0C. However, CO and NO2 gas concentrations increased again after PSBB in 2021 to (CO: 2.90 x 10-3 mol/m2 – 3.31 x 10-3 mol/m2) and (NO2: 2.87 x 10-5 mol/m2 – 5.76 x 10-5 mol/m2) which was followed by an increase in the UHI temperature to 32.62 0C. Therefore, it is known that the concentration of CO and NO2 gases will affect UHI. If the concentration of CO and NO2 gas increases, the UHI temperature will also increase.

References

Alhawiti, R. H., & Mitsova, D. (2016). Using Landsat-8 data to explore the correlation between urban heat island and urban land uses. IJRET: International Journal of Research in Engineering and Technology, 5(3), 457–466. Retrieved from https://shorturl.asia/ARzrb

Arıkan, D., & Yıldız, F. (2023). Investigation of urban heat island and carbon monoxide change using Google Earth engine in Konya. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(4), 1185–1193. https://doi.org/10.28948/ngumuh.1279129

Barbieri, T., Despini, F., & Teggi, S. (2018). A multi-temporal analyses of Land Surface Temperature using Landsat-8 data and open source software: The case study of Modena, Italy. Sustainability, 10(5), 1678. https://doi.org/10.3390/su10051678

Cahyono, W. E., Anwar, A., Gusnita, D., Rahmatia, F., Santoso, H., Kombara, P. Y., Sumaryati, Setyawati, W., Sari, W. J., Susilowati, Y., & others. (2023). Assessment of Air Quality Before and After the COVID-19 Pandemic in Indonesia. In Urban Commons, Future Smart Cities and Sustainability (pp. 957–979). Springer. https://doi.org/10.1007/978-3-031-24767-5_41

Darmawan, A., Setyaningrum, N., Cahyaningtyas, I. F., Perdana, A. P., & others. (2020). Impact of the COVID-19 Large-scale Social Restrictions on NO2 and CO Concentrations in the Most Populated Cities in Java Island, Indonesia. 2020 IEEE Asia-Pacific Conference on Geoscience, Electronics and Remote Sensing Technology (AGERS), 1–10. https://doi.org/10.1109/AGERS51788.2020.9452784

Fauzi, N. A., & Sriyanto, J. (2024). Impact of implementing large-scale social restrictions due to COVID-19 on ambient air quality in Yogyakarta parameters SO2, NO2, and CO. AIP Conference Proceedings, 3145(1). https://doi.org/10.1063/5.0220880

Gholamrezaie, H., Hasanlou, M., Amani, M., & Mirmazloumi, S. M. (2022). Automatic mapping of burned areas using Landsat 8 time-series images in Google Earth engine: A case study from Iran. Remote Sensing, 14(24), 6376. https://doi.org/10.3390/rs14246376

Gusnita, C. (2016). Polusi udara kendaraan bermotor sebagai bentuk kejahatan tanpa korban. Sisi Lain Realita, 1(2), 47–58. https://doi.org/10.25299/sisilainrealita.2016.vol1(2).1377

Hazarin, A. Q., Shidiq, I. P. A., & others. (2019). Carbon dioxide sequestration capability of green spaces in Bogor City. IOP Conference Series: Earth and Environmental Science, 284(1), 12020. https://doi.org/10.1088/1755-1315/284/1/012020

Ihsan, I. M., Ma’rufatin, A., Salim, M. A., Rifai, A., Ikhsan, I. N., Anjani, R., Nishihashi, M., Hashimoto, S., Mukai, H., & Suwedi, N. (2023). Effect of the implementation of community activity restriction policies during the COVID-19 pandemic on air quality. IOP Conference Series: Earth and Environmental Science, 1201(1), 12040. https://doi.org/10.1088/1755-1315/1201/1/012040

Indriyaningtyas, S., Hasandy, L. R., & Dewantoro, B. E. B. (2021). Dinamika Konsentrasi Emisi Gas Karbon Monoksida (CO) Selama Periode PSBB Menggunakan Komputasi Berbasis Cloud Pada Google Earth Engine. Majalah Ilmiah Globe, 23(1), 35–42. https://doi.org/10.24895/MIG.2021.23-1.1258

Ismiyati, I., Marlita, D., & Saidah, D. (2014). Pencemaran udara akibat emisi gas buang kendaraan bermotor. Jurnal Manajemen Transportasi & Logistik (JMTransLog), 1(3), 241–248. https://doi.org/10.54324/j.mtl.v1i3.23

Kazemi-Garajeh, M., Laneve, G., Rezaei, H., Sadeghnejad, M., Mohamadzadeh, N., & Salmani, B. (2023). Monitoring trends of CO, NO2, SO2, and O3 pollutants using time-series sentinel-5 images based on google earth engine. Pollutants, 3(2), 255–279. https://doi.org/10.3390/pollutants3020019

Lillesand, T. M., & Kiefer, R. W. (1994). Remote sensing and image interpretation. New York USA: John Wiley and Sons, Inc.

Mulia, P., Nofrizal, N., & Dewi, W. N. (2021). Analisis Dampak Kabut Asap Karhutla Terhadap Gangguan Kesehatan Fisik. Jurnal Ners Indonesia, 12(1), 51–66. Retrieved from https://shorturl.asia/U7V4d

Nasution, K. (2023). Analysis of Policy Implementation of Large-Scale Social Restrictions in the Administrative City of North Jakarta in 2021. International Journal of Social Service and Research, 3(7), 1835–1851. https://doi.org/10.46799/ijssr.v3i7.492

Oke, R. T. (1997). Urban climate and global environmental change. Applied Climatology, 273–287. Retrieved from https://cir.nii.ac.jp/crid/1573668924799452032

Parhusip, R., Shidiq, I. P. A., & Semedi, J. M. (2022). Dynamics of Urban Heat Island and Anthropogenic Emissions in Bekasi before and during COVID-19 Pandemic using Landsat 8 and Sentinel-5P. Journal of Information Technology and Computer Science, 7(2), 160–171. https://doi.org/10.25126/jitecs.72437

Prasetyo, A. D., Bashit, N., Yusuf, M. A., & Rassarandi, F. D. (2023). Analysis the effect of large-scale social restrictions on air quality in DKI Jakarta. Journal of Applied Geospatial Information, 7(2), 964–973. https://doi.org/10.30871/jagi.v7i2.5224

Priyambodo, A., Wibowo, A., & Basuki, M. D. (2022). Carbon Monoxide Spatial Pattern Based on Vehicle Volume Distribution in Tangerang City. International Journal of Remote Sensing and Earth Sciences (IJReSES), 19(1), 53–68. Retrieved from https://jurnal.lapan.go.id/index.php/ijreses/article/view/3789

Purwanto, P., Astuti, I. S., Rohman, F., Utomo, K. S. B., & Aldianto, Y. E. (2022). Assessment of the dynamics of urban surface temperatures and air pollution related to COVID-19 in a densely populated City environment in East Java. Ecological Informatics, 71, 101809. https://doi.org/10.1016/j.ecoinf.2022.101809

Putri, D. P. D. (2021). Analisis Variasi Suhu Permukaan Tanah dan Gas Nitrogen Dioksida di Masa Pandemi Covid-19 (Studi Kasus: Kota Semarang). Jurnal Ilmiah Geomatika, 1(1). Retrieved from http://www.jurnal.upnyk.ac.id/index.php/imagi/article/download/4731/3413

Saidal Siburian, M. M. (2020). Pencemaran Udara dan Emisi Gas Rumah Kaca. Jakarta Selatan: Kreasi Cendekia Pustaka.

Santos, N. D. S. A., Roso, V. R., Malaquias, A. C. T., & Baeta, J. G. C. (2021). Internal combustion engines and biofuels: Examining why this robust combination should not be ignored for future sustainable transportation. Renewable and Sustainable Energy Reviews, 148, 111292. https://doi.org/10.1016/j.rser.2021.111292

Sinolungan, J. (2009). Dampak polusi partikel debu dan gas kendaraan bermotor pada volume dan kapasitas paru. Jurnal Biomedik: JBM, 1(2). https://doi.org/10.35790/jbm.1.2.2009.814

Suhardono, S., Septiariva, I. Y., Rachmawati, S., Matin, H. H. A., Qona’ah, N., Nirwana, B., Suryawan, I., Sari, M. M., & Prayogo, W. (2023). Changes in the Distribution of Air Pollutants (Carbon Monoxide) during the Control of the COVID-19 Pandemic in Jakarta, Surabaya, and Yogyakarta, Indonesia. Journal of Ecological Engineering, 24(4). https://doi.org/10.12911/22998993/159508

Thottolil, R., & Kumar, U. (2018). Cloud Computing for Big Geospatial Data Analysis with Google Earth Engine--Urban Research Applications. Lake 2022:-13th Biennial Lake Symposium, 66. Retrieved from https://shorturl.asia/O45sn

Tsou, J., Zhuang, J., Li, Y., & Zhang, Y. (2017). Urban heat island assessment using the Landsat 8 data: a case study in Shenzhen and Hong Kong. Urban Science, 1(1), 10. https://doi.org/10.3390/urbansci1010010

Yu, X., Guo, X., & Wu, Z. (2014). Land surface temperature retrieval from Landsat 8 TIRS—Comparison between radiative transfer equation-based method, split window algorithm and single channel method. Remote Sensing, 6(10), 9829–9852. https://doi.org/10.3390/rs6109829

Yuwono, A. S., & Alfianita, D. (2021). Analysis of air quality changes due to large-scale social restriction policies (study case: Bogor Municipality, Yogyakarta Municipality, and Bantul Regency). IOP Conference Series: Earth and Environmental Science, 871(1), 12025. https://doi.org/10.1088/1755-1315/871/1/012025

Author Biographies

Anshar Vahreza, Syiah Kuala University

Muhammad Isa, Syiah Kuala University

Nasrullah Zaini, Syiah Kuala University

License

Copyright (c) 2024 Anshar Vahreza, Muhammad Isa, Nasrullah Zaini

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).