Investigation of Radioisotope count fluctuation and Shifts of Their Content Accumulation in Rock Minerals

Authors

DOI:

10.29303/jossed.v5i1.7384

Published:

2024-04-30

Issue:

Vol. 5 No. 1 (2024): April

Keywords:

Fluctuation, Investigation, Rock Minerals, Radioisotope, Shift of their content

Articles

Downloads

How to Cite

Pasangka, B., & Pasangka, I. G. (2024). Investigation of Radioisotope count fluctuation and Shifts of Their Content Accumulation in Rock Minerals. Journal of Science and Science Education, 5(1), 73–79. https://doi.org/10.29303/jossed.v5i1.7384

Downloads

Download data is not yet available.

Abstract

: The main problem studied in this study concerns the fluctuations in the number of radioisotopes and the shift in the center of their accumulation in rock minerals in Oesuu, Central Kupang after experiencing weathering a few years ago. The objectives of the study: determine the range of radioisotope counts in rock minerals in Oesuu Central Kupang after weathering several years ago, investigate the shift in the center of accumulation of radioisotope content in rock minerals in Oesuu Central Kupang by time-dependent radioisotope migration and decay processes. Research methods: observation, survey, mapping, analysis, and interpretation. Brief research procedures: Observations to determine the boundaries of the research site and create a grid, measure the background count around the survey location, measure the field data, correct the data, make three-dimensional curves and contours of the radioisotope radiation count, interpret and draw conclusions. Research result. The range of radioisotope radiation counts in rock minerals is 10 Counts per minute (cpm) to 107 cpm, and the results of the 2008 study were 9 cpm to 117 cpm. The distribution of the accumulation center of radioisotope content in rock minerals has shifted from the edge towards the center of the study site, which is most likely caused by radioisotope migration and accumulated by very strong cohesive forces between radioisotope elements contained in rock minerals.

References

Al Nabhani, K., Khan, F., & Yang, M. (2016). Technologically Enhanced Naturally Occurring Radioactive Materials in oil and gas production: A silent killer. Process Safety and Environmental Protection, 99, 237–247. https://doi.org/10.1016/j.psep.2015.09.014

Aplin, K. L., Briggs, A. A., Harrison, R. G., & Marlton, G. J. (2017). Measuring ionizing radiation in the atmosphere with a new balloon‐borne detector. Space Weather, 15(5), 663–672. https://doi.org/10.1002/2017SW001610

Ba, V. N., Phuong, H. T., Thien, B. N., Van Thang, N., Thu, H. N. P., & Loan, T. T. H. (2022). Variation of radioactivity and trace metal elements during the growth period of water spinach. Journal of Radioanalytical and Nuclear Chemistry, 331(5), 2319–2329. https://doi.org/10.1007/s10967-022-08293-2

Bartels, C., Kersting, F., & Wolf, N. (2023). Testing Marx: Capital Accumulation, Income Inequality, and Socialism in Late Nineteenth-Century Germany. Review of Economics and Statistics, 1–44. https://doi.org/10.1162/rest_a_01305

Bonotto, D. M. (2017). The dissolved uranium concentration and 234U/238U activity ratio in groundwaters from spas of southeastern Brazil. Journal of Environmental Radioactivity, 166, 142–151. https://doi.org/10.1016/j.jenvrad.2016.03.009

Bonotto, D. M., & Oliveira, A. M. M. A. D. (2017). Mobility indices and doses from 210Po and 210Pb activity concentrations data in Brazilian spas groundwaters. Journal of Environmental Radioactivity, 172, 15–23. https://doi.org/10.1016/j.jenvrad.2017.03.006

Djabou, R. E., Mavon, Ch., Belafrites, A., & Groetz, J. E. (2022). Mining treatment effects on natural radioactivity and radiological hazard index assessment in phosphates and fertilizers used in Algeria. Journal of Radioanalytical and Nuclear Chemistry, 331(5), 2081–2092. https://doi.org/10.1007/s10967-022-08258-5

Ebihara, M., Shirai, N., Kuwayama, J., & Toh, Y. (2022). High sensitivity determination of iridium contents in ultra-basic rocks by INAA with coincidence gamma-ray detection. Nuclear Engineering and Technology, 54(2), 423–428. https://doi.org/10.1016/j.net.2021.08.010

Faganeli, J., Falnoga, I., Benedik, L., Jeran, Z., & Klun, K. (2017). Accumulation of 210 Po in coastal waters (Gulf of Trieste, northern Adriatic Sea). Journal of Environmental Radioactivity, 174, 38–44. https://doi.org/10.1016/j.jenvrad.2016.07.018

Fallatah, O., & Khattab, M. R. (2023). Evaluation of Environmental Radioactivity and Hazard Impacts Saudi Arabia Granitic Rocks Used as Building Materials. Minerals, 13(2), 165. https://doi.org/10.3390/min13020165

Gwynn, J. P., Hatje, V., Casacuberta, N., Sarin, M., & Osvath, I. (2024). The effect of climate change on sources of radionuclides to the marine environment. Communications Earth & Environment, 5(1), 135. https://doi.org/10.1038/s43247-024-01241-w

Jiang, Q., Wang, Y., Cheng, J., Pan, Y., Ren, J., Leng, Y., Liu, Y., Bao, C., Wang, L., & Tuo, X. (2022). Sorption of cesium on surrounding granite of Chinese low- and medium-level nuclear waste repository in the groundwater environment. Journal of Radioanalytical and Nuclear Chemistry, 331(5), 2069–2080. https://doi.org/10.1007/s10967-022-08280-7

Kallithrakas-Kontos, N. G., Xarchoulakos, D. C., Boultadaki, P., Potiriadis, C., & Kehagia, K. (2018). Selective Membrane Complexation and Uranium Isotopes Analysis in Tap Water and Seawater Samples. Analytical Chemistry, 90(7), 4611–4615. https://doi.org/10.1021/acs.analchem.7b05115

Kang, H., Min, S., Seo, B., Roh, C., Hong, S., & Cheong, J. H. (2020). Low Energy Beta Emitter Measurement: A Review. Chemosensors, 8(4), 106. https://doi.org/10.3390/chemosensors8040106

Kazakis, N., Busico, G., Ntona, M.-M., Philippou, K., Kaprara, E., Mitrakas, M., Bannenberg, M., Ioannidou, A., Pashalidis, I., Colombani, N., Mastrocicco, M., & Voudouris, K. (2022). The origin of Uranium in groundwater of the eastern Halkidiki region, northern Greece. Science of The Total Environment, 812, 152445. https://doi.org/10.1016/j.scitotenv.2021.152445

Küçükömeroğlu, B., Şen, A., Duran, S. U., Çiriş, A., Taskin, H., & Ersoy, H. (2021). Determination of radioactivity level of water supply network in Trabzon province, Turkey. Isotopes in Environmental and Health Studies, 57(6), 610–622. https://doi.org/10.1080/10256016.2021.1972996

López-Pérez, M., Martín-Luis, C., Catalán, A., & Salazar-Carballo, P. A. (2022). Estimation of radiation doses due to groundwater intake at a volcanic island: Tenerife (Canary Islands, Spain). Food Control, 135, 108830. https://doi.org/10.1016/j.foodcont.2022.108830

Machiraju, P. V. S., Murty, V. V. K. P. L. N., & Shyamala, P. (2020). Distribution of uranium in drinking/ground waters in Narsipatnam Revenue Division of Visakhapatnam District of Andhra Pradesh, India and consequent ingestion dose. Journal of Radioanalytical and Nuclear Chemistry, 324(3), 1109–1113. https://doi.org/10.1007/s10967-020-07134-4

Manikanda Bharath, K., Natesan, U., Chandrasekaran, S., & Srinivasalu, S. (2022). Determination of natural radionuclides and radioactive minerals in urban coastal zone of South India using Geospatial approach. Journal of Radioanalytical and Nuclear Chemistry, 331(5), 2005–2018. https://doi.org/10.1007/s10967-022-08284-3

Molla, S., Jha, S. K., Rana, B. K., & Kulkarni, M. S. (2021). Disequilibrium of 226Ra, 210Pb, and 210Po in groundwater and soil around the Singhbhum region of Jharkhand, India. Journal of Radioanalytical and Nuclear Chemistry, 330(3), 1243–1254. https://doi.org/10.1007/s10967-021-08055-6

N, D., Panda, B., S, C., M V, P., Singh, D. K., A L, R., & Sahoo, S. K. (2021). Spatio-temporal variations of Uranium in groundwater: Implication to the environment and human health. Science of The Total Environment, 775, 145787. https://doi.org/10.1016/j.scitotenv.2021.145787

Navarro-Martinez, F., Salas Garcia, A., Sánchez-Martos, F., Baeza Espasa, A., Molina Sánchez, L., & Rodríguez Perulero, A. (2017). Radionuclides as natural tracers of the interaction between groundwater and surface water in the River Andarax, Spain. Journal of Environmental Radioactivity, 180, 9–18. https://doi.org/10.1016/j.jenvrad.2017.09.015

Noli, F., Kazakis, N., Vargemezis, G., & Ioannidou, A. (2016). The uranium isotopes in the characterisation of groundwater in the Thermi-Vasilika region, northern Greece. Isotopes in Environmental and Health Studies, 52(4–5), 405–413. https://doi.org/10.1080/10256016.2015.1119134

Nunes, L. J. R., Curado, A., & Lopes, S. I. (2023). The Relationship between Radon and Geology: Sources, Transport and Indoor Accumulation. Applied Sciences, 13(13), 7460. https://doi.org/10.3390/app13137460

Olszewski, G., Boryło, A., & Skwarzec, B. (2015). Uranium (234U, 235U and 238U) contamination of the environment surrounding phosphogypsum waste heap in Wiślinka (northern Poland). Journal of Environmental Radioactivity, 146, 56–66. https://doi.org/10.1016/j.jenvrad.2015.04.001

Ostoich, P., Beltcheva, M., Antonio Heredia Rojas, J., & Metcheva, R. (2022). Radionuclide Contamination as a Risk Factor in Terrestrial Ecosystems: Occurrence, Biological Risk, and Strategies for Remediation and Detoxification. In D. Junqueira Dorta & D. Palma De Oliveira (Eds.), The Toxicity of Environmental Pollutants. IntechOpen. https://doi.org/10.5772/intechopen.104468

Pasangka, B., & Ngana, F. R. (2020). Radiation Measurement Of Radioisotope In Mineral Deposit At Subdistrict Of Middle Kupang West Timor Island Indonesia. Jurnal Fisika : Fisika Sains Dan Aplikasinya, 5(1), 78–86. https://doi.org/10.35508/fisa.v5i1.2388

Rojas, L. V., Dos Santos Júnior, J. A., Alvarado, J. A. C., Milan, M. O., Röllin, S., Amaral, R. S., Fernández, Z. H., & Do Nascimento Santos, J. M. (2020). Natural uranium isotopes and 226Ra in surface and groundwater from a basin of a semiarid region in Brazil. Journal of Radioanalytical and Nuclear Chemistry, 326(2), 1081–1089. https://doi.org/10.1007/s10967-020-07393-1

Rozhkova, A. K., Kuzmenkova, N. V., Sibirtsev, A. M., Petrov, V. G., Shi, K. L., Hou, X. L., & Kalmykov, S. N. (2022). Simultaneous separation of actinides and technetium from large volumes of natural water for their determination. Journal of Radioanalytical and Nuclear Chemistry, 331(5), 2037–2044. https://doi.org/10.1007/s10967-022-08274-5

Šešlak, B., Vukanac, I., Kandić, A., Đurašević, M., Erić, M., Jevremović, A., & Benedik, L. (2017). Determination of 210Pb by direct gamma-ray spectrometry, beta counting via 210Bi and alpha-particle spectrometry via 210Po in coal, slag and ash samples from thermal power plant. Journal of Radioanalytical and Nuclear Chemistry, 311(1), 719–726. https://doi.org/10.1007/s10967-016-5028-6

Sharma, D. B., Jha, V. N., Singh, S., Sethy, N. K., Sahoo, S. K., Jha, S. K., & Kulkarni, M. S. (2021). Distribution of 210Pb and 210Po in ground water around uranium mineralized area of Jaduguda, Jharkhand, India. Journal of Radioanalytical and Nuclear Chemistry, 327(1), 217–227. https://doi.org/10.1007/s10967-020-07495-w

Smičiklas, I., & Šljivić-Ivanović, M. (2016). Radioactive Contamination of the Soil: Assessments of Pollutants Mobility with Implication to Remediation Strategies. In M. L. Larramendy & S. Soloneski (Eds.), Soil Contamination—Current Consequences and Further Solutions. InTech. https://doi.org/10.5772/64735

Su, X., & Lim, K. F. (2023). Capital accumulation, territoriality, and the reproduction of state sovereignty in China: Is this “new” state capitalism? Environment and Planning A: Economy and Space, 55(3), 697–715. https://doi.org/10.1177/0308518X221093643

Taftazani, A., Sumining, S., & Muzakky, M. (2013). Sebaran radioaktivitas radionuklida alam dan faktor akumulasinya dalam air, sedimen dan tanaman di perairan sungai dan laut surabaya. Ganendra Majalah IPTEK Nuklir, 5(2). https://doi.org/10.17146/gnd.2002.5.2.216

Tortorello, R., Widom, E., & Renwick, W. H. (2013). Use of uranium isotopes as a temporal and spatial tracer of nuclear contamination in the environment. Journal of Environmental Radioactivity, 124, 287–300. https://doi.org/10.1016/j.jenvrad.2013.06.007

Wang, C., Myshkin, V. F., Khan, V. A., & Panamareva, A. N. (2022). A review of the migration of radioactive elements in clay minerals in the context of nuclear waste storage. Journal of Radioanalytical and Nuclear Chemistry, 331(9), 3401–3426. https://doi.org/10.1007/s10967-022-08394-y

Wang, L., Cheng, J., Bao, C., Wang, Y., Jiang, Q., Pan, Y., Liu, Y., Hong, T., Tuo, X., & Leng, Y. (2022). Simulation of nuclide migration in a middle- and low-level radioactive waste repository based on GMS. Journal of Radioanalytical and Nuclear Chemistry, 331(5), 2159–2167. https://doi.org/10.1007/s10967-022-08260-x

Wang (王夕露), X., Clark, A. M., Ellis, J., Ertel, A. F., Fields, B. D., Fry, B. J., Liu, Z., Miller, J. A., & Surman, R. (2021). R-Process Radioisotopes from Near-Earth Supernovae and Kilonovae. The Astrophysical Journal, 923(2), 219. https://doi.org/10.3847/1538-4357/ac2d90

Wu, Y., Bai, X.-J., Shi, H.-S., He, L.-Y., & Qiu, H.-N. (2023). Dating of authigenic minerals in sedimentary rocks: A review. Earth-Science Reviews, 241, 104443. https://doi.org/10.1016/j.earscirev.2023.104443

Xarchoulakos, D. C., Manoutsoglou, E., & Kallithrakas-Kontos, N. G. (2022). Distribution of uranium isotopes, 210Pb and 210Po in groundwaters of Crete- Greece. Journal of Radioanalytical and Nuclear Chemistry, 331(11), 4685–4694. https://doi.org/10.1007/s10967-022-08578-6

Author Biography

Bartholomeus Pasangka

 

 

 

License

Copyright (c) 2024 Bartholomeus Pasangka, Irvandi Gorby Pasangka

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Journal of Science and Science Education, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Attribution 4.0 International (CC BY 4.0). This license allows authors to use all articles, data sets, graphics and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Journal of Science and Science Education.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).