Optimization of Thermoelectric Generator (TEG) Configuration for Burning Sugarcane Bagasse as an Alternative Energy Source

Authors

Rahmiaty Abd. Karim , Asri Arbie , Muhammad Yunus , Mursalin , Dewa Gede Eka Setiawan , Haerul Ahmadi

DOI:

10.29303/jossed.v5i2.9169

Published:

2024-10-31

Issue:

Vol. 5 No. 2 (2024): October

Keywords:

Energy, Thermoelectric Generator, Sugarcane bagasse

Articles

Downloads

How to Cite

Karim, R. A., Arbie, A., Yunus, M., Mursalin, M., Setiawan, D. G. E., & Ahmadi, H. (2024). Optimization of Thermoelectric Generator (TEG) Configuration for Burning Sugarcane Bagasse as an Alternative Energy Source. Journal of Science and Science Education, 5(2), 108–112. https://doi.org/10.29303/jossed.v5i2.9169

Downloads

Download data is not yet available.

Abstract

Sugarcane bagasse is waste from the sugar industry which has the potential to be an efficient fuel for producing electricity by converting heat energy into electrical energy using a Thermoelectric Generator (TEG). TEG can be optimized to burn sugarcane bagasse as an alternative energy source in Indonesia. This research uses series and parallel configurations to test the optimal TEG configuration to increase energy conversion efficiency. The research results revealed that supercapacitors' parallel configuration produced the highest power in the 66th minute at 0.26 W. In comparison, the series configuration with supercapacitors produced 0.21 W of power in the 63rd minute. For the parallel configuration without supercapacitors, the energy produced reaches 0.20 W in the 69th minute, and the series configuration without supercapacitors produces 0.19 W in the 63rd minute. The parallel configuration shows more optimal performance than the series configuration, making it a promising solution in diversifying energy sources, especially in supporting efforts to utilize agricultural waste sustainably. Optimization of the thermoelectric generator configuration for burning sugarcane bagasse can be used as an alternative energy source.

References

Asaduzzaman, M., Ali, M. H., Pratik, N. A., & Lubaba, N. (2023). Exhaust heat harvesting of automotive engine using thermoelectric generation technology. Energy Conversion and Management: X, 19, 100398. https://doi.org/10.1016/j.ecmx.2023.100398

Basu, R. (2023). Thermoelectric modules: key issues in architectural design and contact optimization. ChemNanoMat, 9(3), e202200551. https://doi.org/10.1002/cnma.202200551

Cekdin, C., Nawawi, Z., & Faizal, M. (2020). The usage of thermoelectric generator as a renewable energy source. Telkomnika (Telecommunication Computing Electronics and Control), 18(4), 2186-2192. http://doi.org/10.12928/telkomnika.v18i4.13072

Du, K. W., & Wu, C. I. (2024). An Innovative Tubular Thermoelectric Generator (TTEG) for Enhanced Waste Heat Recovery in Industrial and Automotive Applications. Applied Sciences, 14(2), 685. https://doi.org/10.3390/app14020685

Galih, A., & Eko Budi, W. (2022). Pemanfaatan Daya Listrik Bagi Pelanggan Tegangan Menengah. Jurnal Sains & Teknologi Fakultas Teknik, 12(1). http://repository.unsada.ac.id/3769/

Gani, A., Mamat, R., Nizar, M., Yana, S., Yasin, M. H. M., & Rosdi, S. M. (2024). Prospects for renewable energy sources from biomass waste in Indonesia. Case Studies in Chemical and Environmental Engineering, 10, 100880. https://doi.org/10.1016/j.cscee.2024.100880

Hamida, A., Santoso, B., & Sukandi, A. (2021). Pemanfaatan Beda Temperatur terhadap Daya Hasil Keluaran pada Termoelektrik Generator sebagai Sumber Energi untuk Penerangan Jalan Umum (PJU). Seminar Nasional Teknik Mesin (Vol. 11, No. 1, pp. 327-332). https://repository.pnj.ac.id/id/eprint/2932/

Holechek, J. L., Geli, H. M., Sawalhah, M. N., & Valdez, R. (2022). A global assessment: can renewable energy replace fossil fuels by 2050?. Sustainability, 14(8), 4792. https://doi.org/10.3390/su14084792

Jouhara, H., Żabnieńska-Góra, A., Khordehgah, N., Doraghi, Q., Ahmad, L., Norman, L., ... & Dai, S. (2021). Thermoelectric generator (TEG) technologies and applications. International Journal of Thermofluids, 9, 100063. https://doi.org/10.1016/j.ijft.2021.100063

Khalid, M., Syukri, M., & Gapy, M. (2016). Pemanfaatan energi panas sebagai pembangkit listrik alternatif berskala kecil dengan menggunakan termoelektrik. Jurnal Komputer, Informasi Teknologi, dan Elektro, 1(3). https://jurnal.usk.ac.id/kitektro/article/view/6142

Mamur, H., & Ahıska, R. (2014). A review: Thermoelectric generators in renewable energy. International journal of renewable energy research, 4(1), 128-136. https://dergipark.org.tr/en/pub/ijrer/issue/16076/168144

Manghwar, R., Selvaraj, J. A., Abd Rahim, N. B., Kumar, L., & Khoharo, H. (2024). Global advancements of solar thermoelectric generators application, limitations, and prospects: A comprehensive review. Applied Thermal Engineering, 124231. https://doi.org/10.1016/j.applthermaleng.2024.124231

Muharnif, M., Umuani, K., & Nasution, F. A. (2022). Analisis Termoelektrik Generator (TEG) Sebagai Pembangkit Listrik Bersekala Kecil Terhadap Perbedaan Temperatur. Jurnal Rekayasa Material, Manufaktur dan Energi, 5(1), 26-32. https://doi.org/10.30596/rmme.v5i1.10260

Nurbaeti, L., Prasetya, A. T., & Kusumastuti, E. (2018). Arang Ampas Tebu (Bagasse) Teraktivasi Asam Klorida sebagai Penurun Kadar Ion H2PO4. Indonesian Journal of Chemical Science, 7(2), 132-139. https://doi.org/10.15294/ijcs.v7i2.20912

Osman, A. I., Chen, L., Yang, M., Msigwa, G., Farghali, M., Fawzy, S., ... & Yap, P. S. (2023). Cost, environmental impact, and resilience of renewable energy under a changing climate: a review. Environmental chemistry letters, 21(2), 741-764. https://doi.org/10.1007/s10311-022-01532-8

Prabhu, V. S., & Mukhopadhyay, K. (2023). Macro-economic impacts of renewable energy transition in India: An input-output LCA approach. Energy for Sustainable Development, 74, 396-414. https://doi.org/10.1016/j.esd.2023.04.006

Pramudiyanto, A. S., & Suedy, S. W. A. (2020). Energi bersih dan ramah lingkungan dari biomassa untuk mengurangi efek gas rumah kaca dan perubahan iklim yang ekstrim. Jurnal Energi Baru Dan Terbarukan, 1(3), 86-99. https://doi.org/10.14710/jebt.2020.9990

Punin, W., Maneewan, S., & Punlek, C. (2018). Thermoelectric generator for the recovery of energy from the low-grade heat sources in sugar industry. International Journal of Power Electronics and Drive Systems, 9(4), 1565. https://doi.org/10.11591/ijpeds.v9.i4.pp1565-1572

Puspita, S. C., Sunarno, H., & Indarto, B. (2017). Generator termoelektrik untuk pengisisan aki. Jurnal Fisika Dan Aplikasinya, 13(2), 84-87. http://dx.doi.org/10.12962/j24604682.v13i2.2748

Rafika, H., Mainil, R. I., & Aziz, A. (2016). Kaji eksperimental pembangkit listrik berbasis thermoelectric generator (TEG) dengan pendinginan menggunakan udara. Jurnal sains dan teknologi, 15(1), 7-11. http://dx.doi.org/10.31258/jst.v15.n1.p7-11

Raihan, A. (2023). An overview of the energy segment of Indonesia: present situation, prospects, and forthcoming advancements in renewable energy technology. Journal of Technology Innovations and Energy, 2(3), 37-63. https://doi.org/10.56556/jtie.v2i3.599

Riajaya, P. D., Hariyono, B., Cholid, M., Kadarwati, F. T., Santoso, B., Djumali, & Subiyakto. (2022). Growth and yield potential of new sugarcane varieties during plant and first ratoon crops. Sustainability, 14(21), 14396. https://doi.org/10.3390/su142114396

Riyanto, A. (2014). Superkapasitor sebagai piranti penyimpan energi listrik masa depan. Jurnal Ilmiah Pendidikan Fisika Al-Biruni, 3(2), 56-63. http://dx.doi.org/10.24042/jipfalbiruni.v3i2.73

Saha, M., Tregenza, O., Twelftree, J., & Hulston, C. (2023). A review of thermoelectric generators for waste heat recovery in marine applications. Sustainable Energy Technologies and Assessments, 59, 103394. https://doi.org/10.1016/j.seta.2023.103394

Sasmita, S. A., Ramadhan, M. T., Kamal, M. I., & Dewanto, Y. (2019). Alternatif pembangkit energi listrik menggunakan prinsip termoelektrik generator. TESLA: Jurnal Teknik Elektro, 21(1), 57-61. https://doi.org/10.24912/tesla.v21i1.3249

Setiati, R., Wahyuningrum, D., & Kasmungin, S. (2016, August). Analisa spektrum infra red pada proses sintesa lignin ampas tebu menjadi surfaktan lignosulfonat. In PROSIDING SEMINAR NASIONAL CENDEKIAWAN (pp. 20-1). https://doi.org/10.25105/semnas.v0i0.903

Siregar, A. R. (2022). Analisis Pengaruh Karakteristik Termoelektrik Generator Seabagi Peubah Energi Panas. Jurnal Pendidikan Sains dan Komputer, 2(02), 235-241. https://doi.org/10.47709/jpsk.v2i02.1530

Uddin, M., Mo, H., Dong, D., Elsawah, S., Zhu, J., & Guerrero, J. M. (2023). Microgrids: A review, outstanding issues and future trends. Energy Strategy Reviews, 49, 101127. https://doi.org/10.1016/j.esr.2023.101127

Win, S. L. Y., Chiang, Y. C., Huang, T. L., & Lai, C. M. (2024). Thermoelectric Generator Applications in Buildings: A Review. Sustainability, 16(17), 7585. https://doi.org/10.3390/su16177585

Yi, S., Abbasi, K. R., Hussain, K., Albaker, A., & Alvarado, R. (2023). Environmental concerns in the United States: Can renewable energy, fossil fuel energy, and natural resources depletion help?. Gondwana Research, 117, 41-55. https://doi.org/10.1016/j.gr.2022.12.021

Yudo, H., & Jatmiko, S. (2008). Analisa teknis kekuatan mekanis material komposit berpenguat serat ampas tebu (baggase) ditinjau dari kekuatan tarik dan impak. Kapal: Jurnal Ilmu Pengetahuan dan Teknologi Kelautan, 5(2), 95-101. https://doi.org/10.14710/kpl.v5i2.3197

Author Biographies

Rahmiaty Abd. Karim, Universitas Negeri Gorontalo

Asri Arbie, Universitas Negeri Gorontalo

Muhammad Yunus, Universitas Negeri Gorontalo

Mursalin, Universitas Negeri Gorontalo

Dewa Gede Eka Setiawan, Universitas Negeri Gorontalo

Haerul Ahmadi, Universitas Negeri Gorontalo

License

Copyright (c) 2024 Rahmiaty Abd. Karim, Asri Arbie, Muhammad Yunus, Mursalin, Dewa Gede Eka Setiawan, Haerul Ahmadi

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Journal of Science and Science Education, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Attribution 4.0 International (CC BY 4.0). This license allows authors to use all articles, data sets, graphics and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Journal of Science and Science Education.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).