The Effect of Temperature Differences on the TEG-Based Conversion of Thermal Energy into Electrical Energy

Authors

Nuraliva F.P Lapananda , Asri Arbie , Muhammad Yunus , Muh. Fachrul Latief , Septiana Kurniasari , Icha Untari Meidji

DOI:

10.29303/jossed.v5i2.9170

Published:

2024-10-31

Issue:

Vol. 5 No. 2 (2024): October

Keywords:

Electrical, Energy, TEG, Temperature, Thermal

Articles

Downloads

How to Cite

Lapananda, N. F., Arbie, A., Yunus, M., Latief, M. F., Kurniasari, S., & Meidji, I. U. (2024). The Effect of Temperature Differences on the TEG-Based Conversion of Thermal Energy into Electrical Energy. Journal of Science and Science Education, 5(2), 186–190. https://doi.org/10.29303/jossed.v5i2.9170

Downloads

Download data is not yet available.

Abstract

Thermoelectric Generator (TEG) is an energy conversion device used as an electricity generator to create hot electric currents through temperature differences. This research aims to determine the effect of time on temperature differences from burning rice husks (Oryza sativa L.) in series and parallel configurations. This research method was carried out experimentally by burning rice husk biomass in a kiln and utilizing the heat of the fire to convert it into electrical energy. The TEG total of 48 TEG pieces which produce the highest current in the series configuration produces the highest with respective values ​​of current 0.09 A and voltage 1.02 V, and the parallel configuration TEG produces the highest with respective values ​​of current 0.98 A and voltage 0.25 V. The highest temperature difference reaches 30.5°C in the series configuration and 31.8°C in the parallel configuration. The longer the burning time, the more significant the resulting temperature difference. Likewise, the greater the electric current and voltage, the longer the burning time.

References

Awasthi, S., Mishra, A., & Pal, D. B. (2024). Energy Production from Sugarcane Bagasse and Rice Husk. In Sustainable Clean Energy Production Using Waste Biomass: Sustainable Energy Production and Utilization (pp. 157-181). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-97-0840-6_7

Baderan, D. W., & Hamidun, M. S. (2016). Pemanfaatan Sekam Padi Sebagai Bahan Bakar Alternatif dan Pupuk Organik Yang Ramah Lingkungan Di Desa Lakeya Kecamatan Tolangohula Kabupaten Gorontalo. KKS Pengabdian. Gorontalo (ID): Universitas Negeri Gorontalo, 4(1).

Baskoro, F., Wibowo, N. T., & Widyartono, M. (2021). Rancang Bangun Thermoelectric Generator Sebagai Pembangkit Listrik Dengan Memanfaatkan Panas Matahari. JURNAL TEKNIK ELEKTRO, 10(1), 127-136. https://www.academia.edu/98633444/

Dadhich, A., Saminathan, M., Kumari, K., Perumal, S., Rao, M. R., & Sethupathi, K. (2023). Physics and technology of thermoelectric materials and devices. Journal of Physics D: Applied Physics, 56(33), 333001. https://doi.org/10.1088/1361-6463/acc9d0

Hafiz, M. H., Nuraida, M. H., Norzalina, O., Noorhelinahani, A. B., & Julaida, A. J. (2019). Study of power thermoelectric generator by using combustion engine heat source. International Journal of Scientific and Technology Research, 8(1), 91–95. www.ijstr.org

Hiendro, A., & Suryadi, D. (2019). Perancangan dan pengujian sistem pembangkit listrik berbasis termoelektrik dengan menggunakan kompor surya sebagai media pemusat panas. Journal of Electrical Engineering, Energy, and Information Technology (J3EIT), 7(2). http://dx.doi.org/10.26418/j3eit.v7i2.35278

Hudaya, C. (2021). Rancangan Termoelektrik Generator (TEG) Portabel Pada Knalpot Sepeda Motor Dengan Material Alumunium Sebagai Konduktor. Jurnal Tambora, 5(1), 60-65. http://jurnal.uts.ac.id

Kandi, R. P., Sudharmini, M. M., Suryan, A., & Nižetić, S. (2023). State of the art and future prospects for TEG-PCM Systems: A review. Energy for Sustainable Development, 74, 328-348. https://doi.org/10.1016/j.esd.2023.04.012

Khalid, M., Syukri, M., & Gapy, M. (2016). Pemanfaatan energi panas sebagai pembangkit listrik alternatif berskala kecil dengan menggunakan termoelektrik. Jurnal Komputer, Informasi Teknologi, dan Elektro, 1(3). https://jurnal.usk.ac.id/kitektro/article/view/6142

Kusnandar, V. B. (2022). Ini Sektor dengan Konsumsi Energi Terbesar di RI pada 2021. databoks, Jun, 10.

Montero, F. J., Lamba, R., Ortega, A., Jahn, W., Chen, W. H., & Guzmán, A. M. (2023). A bidirectional solar thermoelectric generator combining heat storage for daytime and nighttime power generation. Applied Thermal Engineering, 224, 119997. https://doi.org/10.1016/j.applthermaleng.2023.119997

Morelli, D. T. (2023). Thermoelectric Devices. Digital Encyclopedia of Applied Physics, April.

Pambudi, N. A., Firdaus, R. A., Rizkiana, R., Ulfa, D. K., Salsabila, M. S., Suharno, & Sukatiman. (2023). Renewable energy in Indonesia: current status, potential, and future development. Sustainability, 15(3), 2342. https://doi.org/10.3390/su15032342

Parinduri, L., & Parinduri, T. (2020). Konversi biomassa sebagai sumber energi terbarukan. JET (Journal of Electrical Technology), 5(2), 88-92. https://core.ac.uk/download/pdf/329070577.pdf

Pujotomo, I. (2017). Potensi Pemanfaatan Biomassa Sekam Padi Untuk Pembangkit Listrik Melalui Teknologi Gasifikasi: Isworo Pujotomo. Energi & Kelistrikan, 9(2), 126-135. https://doi.org/10.33322/energi.v9i2.44

Purwanto, A. (2020). Pemanfaatan Energi Panas Terbuang Tungku Pandai Besi Sebagai Suber Energi Listrik Alternatif Menggunakan Generator Termoelektrik (Teg) (Vol. 7, Issue 2). http://repository.unej.ac.id/handle/123456789/97435

Raihan, A. (2023). An overview of the energy segment of Indonesia: present situation, prospects, and forthcoming advancements in renewable energy technology. Journal of Technology Innovations and Energy, 2(3), 37-63. https://doi.org/10.56556/jtie.v2i3.599

Ramírez, A. T. O., Tovar, M. R., & Silva-Marrufo, O. (2024). Rice husk reuse as a sustainable energy alternative in Tolima, Colombia. Scientific Reports, 14(1), 10391. https://www.nature.com/articles/s41598-024-60115-5

Saha, M., Tregenza, O., Twelftree, J., & Hulston, C. (2023). A review of thermoelectric generators for waste heat recovery in marine applications. Sustainable Energy Technologies and Assessments, 59, 103394. https://doi.org/10.1016/j.seta.2023.103394

Senapati, A. K., Dash, M. S. P., & Rakesh, M. P. Thermo-Electric Generator in Turbocharged Diesel Engine-A Review. www.ijiset.com

Silaban, J., Nasution, A. A., & Roza, I. (2020). Pemanfaatan Thermo Electric Generator Dari Konversi Energi Panas Menjadi Listrik Untuk Charger Ponsel. JiTEKH, 8(2), 71-77. https://doi.org/10.35447/jitekh.v8i2.295

Tang, J., Ni, H., Peng, R. L., Wang, N., & Zuo, L. (2023). A review on energy conversion using hybrid photovoltaic and thermoelectric systems. Journal of Power Sources, 562, 232785. https://doi.org/10.1016/j.jpowsour.2023.232785

Tyagi, K., Gahtori, B., Kumar, S., & Dhakate, S. R. (2023). Advances in solar thermoelectric and photovoltaic-thermoelectric hybrid systems for power generation. Solar Energy, 254, 195-212. https://doi.org/10.1016/j.solener.2023.02.051

Udjianto, T., Sasono, T., & Manunggal, B. P. (2021). Potensi Sekam Padi sebagai Bahan Bakar Alternatif PLTBm di Sumatera Barat. Jurnal Teknik Energi, 11(1), 11-18. https://doi.org/10.35313/.v11i1.3499

Wardati, I., Kirom, M. R., & Ajiwiguna, T. A. (2020). Analisis Penerapan Termoelektrik Generator Pada Solar Water Heater Tipe Kolektor Plat Datar Dengan Simulator Radiasi Matahari. eProceedings of Engineering, 7(1).

Win, S. L. Y., Chiang, Y. C., Huang, T. L., & Lai, C. M. (2024). Thermoelectric Generator Applications in Buildings: A Review. Sustainability, 16(17), 7585. https://doi.org/10.3390/su16177585

Yılmaz Tuncel, N. (2023). Stabilization of rice bran: a review. Foods, 12(9), 1924. https://doi.org/10.3390/foods12091924

Author Biographies

Nuraliva F.P Lapananda, Universitas Negeri Gorontalo

Asri Arbie, Universitas Negeri Gorontalo

Muhammad Yunus, Universitas Negeri Gorontalo

Muh. Fachrul Latief, Universitas Negeri Gorontalo

Septiana Kurniasari, Universitas Negeri Gorontalo

Icha Untari Meidji, Universitas Negeri Gorontalo

License

Copyright (c) 2024 Nuraliva F.P Lapananda, Asri Arbie, Muhammad Yunus, Muh. Fachrul Latief, Septiana Kurniasari, Icha Untari Meidji

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Journal of Science and Science Education, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Attribution 4.0 International (CC BY 4.0). This license allows authors to use all articles, data sets, graphics and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Journal of Science and Science Education.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).