Growth and Antibiotic Sensitivity Status of Bacillus spp. associated with Abalone (Haliotis asinina) as Probiotic Candidate Selection

Authors

Faturrahman , Nurul Zulfa Fitriana , Sarkono , Ernin Hidayati

DOI:

10.29303/jossed.v4i1.3089

Published:

2023-04-30

Issue:

Vol. 4 No. 1 (2023): April

Keywords:

Antibiotic resistance, Abalone, Aquaculture probiotics, Bacillus

Articles

Downloads

How to Cite

Faturrahman, F., Fitriana, N. Z. ., Sarkono, S., & Hidayati, E. . (2023). Growth and Antibiotic Sensitivity Status of Bacillus spp. associated with Abalone (Haliotis asinina) as Probiotic Candidate Selection. Journal of Science and Science Education, 4(1), 55–64. https://doi.org/10.29303/jossed.v4i1.3089

Downloads

Download data is not yet available.

Abstract

The use of probiotics is an innovation in an effort to increase production and fight pathogens in aquaculture cultivation environments. Probiotic candidate microorganisms are selected selectively to ensure that the probiotics used are safe and provide benefits for the host and the environment. This study aims to select probiotic candidates based on the aspects of growth and sensitivity to antibiotics from 4 isolates of Bacillus from abalone (Haliotis asinina). Growth observations were carried out by turbidimetric method using a spectrophotometer at a wavelength of 600 nm in SWC media, and antibiotic sensitivity was tested using Rifampicin, Gentamicin, Kanamycin, and Erythromycin antibiotics using the well-diffusion agar method. The growth analysis of isolates was described by a growth curve based on the OD value, and antibiotic susceptibility based on the diameter of the inhibition zone. The results showed that the growth of the four isolates of Bacillus spp. had a short lag phase, ranging from 1-2 hours, an exponential phase ranging from 15 hours to B. pumilus SLK1 and B. licheniformis SLK2 isolates, and 12 hours to B. coagulans CaK1 and B. coagulans CaK6 isolates. Antibiotic sensitivity showed that B. coagulans CaK1 isolates were sensitive to all the tested antibiotics, while B. pumilus SLK1 isolates, B. licheniformis SLK2, and B. coagulans CaK6 were only sensitive to Rifampicin and Gentamicin antibiotics. The ideal probiotic candidate is an isolate with good growth and does not have resistance properties, based on the results of this study CaK1 isolate has the potential as a probiotic candidate

References

Alonso S., Castro M.C., Berdasco M., de-la-Banda J.G., Xabier M.V.X.M., & de-Rojas A.H. (2018). Isolation and Partial Characterization of Lactic Acid Bacteria from the Gut Microbiota of Marine Fishes for Potential Application as Probiotics in Aquaculture, Probiotics and Antimicrobial Proteins, 1-11, DOI: 10-1007/s12602-018-9439-2

Amin M., Christopher J.S.B., Mark B.A., & Christopher M.B. (2019). Growth enhancement of tropical abalone, Haliotis asinina L, through probiotic supplementation, Aquaculture International, 1-13, DOI: 10.1007/s10499-019-00473-4.

Aprilliani M., Sarjito M.A., & Haditomo A.H. (2016). Keanekaragaman Agensia Penyebab Vibriosis pada Udang Vaname (Litopenaeus vannamei) dan Kepekaannya terhadap Antibiotik, Journal of Aquaculture Management, 5(1): 98-107, DOI: http://ejournal-s1.undip.ac.id/index.php/jamt.

Atmojo A.T. (2016). Media Mueller Hinton Agar. diakses pada 11 oktober 2021, pukul 13.30 WITA, melalui http://medlab.id/media-mueller-hinton-agar.html.

Ayichew, Belete A., Alebachew, Tsehaye H., Berhanu H., & Minwuyelet A. (2017). Bacterial Probiotics their Importances T.and Limitations: T. A Review, Journal of Nutrition and Health Sciences, 4(2): 202

Blair J.M.A., Webber M.A., Baylay A.J., Ogbolu D.O., & Piddock L.J.V., (2014). Molecular mechanisms of antibiotic resistance, Nature Reviews Microbiology, 13: 42–51, DOI: 10.1038/nrmicro3380.

Caroll K.C., Butel J.S., Morse S.A., Mietzner T., Detrick B., Mitchell T.G., McKerrow J.H., & Sakanari J.A. (2016). Jawetz, Melnick, & Adelberg’s Medical Microbiology, 27th Edition, (McGraw-Hill, New York, Amerika Serikat.

Chauhan A. & Singh, R. (2018). Probiotics in aquaculture: a promising emerging alternative approach, Symbiosis 77: 99-11, DOI: 10.1007/s13199-018-0580-1.

Clinical and Laboratory Standards Institute (2012). Performance Standards for Antimicrobial Susceptibility Testing; Twenty Second Informational Supplement, Vol 31, No 1, 188 p.

Dewi E.R.S. (2014). Pertumbuhan Kultur Probiotik Hasil Isolat Bakteri Non-Patogen dalam Berbagai Jenis Media, Bioma, 3(1): 53-65

El-Saadony M.T., Alagawany M., Patra A.K., Kar I., Tiwari R., Dawood M.A.O., Dhama K., & Abdel-Latif H.M.R. (2021). The functionality of probiotics in aquaculture: An overview, Fish and Shellfish Immunology, 117: 36–52, DOI: 10.1016/j-fsi.2021.07.007.

Food and Agricultural Organization (2020). The state of fisheries and aquaculture, 2020. https://www.fao.org/documents/card/en/c/ca9229en/#:~:text=The%202020%20edition%20of%20The,Responsible%20Fisheries%20(the%20Code).

Faturrahman (2013). Seleksi Parsial Probiotik Untuk Pertumbuhan Abalon: Isolasi Selektif, Resistensi Antibiotik dan Patogensitas, Jurnal Ilmiah Pendidikan Biologi, Biologi Edukasi, 5 (1):1-7, DOI: 10.1234/jbe.v5-i1.959.

Faturrahman (2012). Potensi Bakteri Agarolitik Penyedia Enzim agarase sebagai Kandidat Probiotik Pemacu Pertumbuhan Abalon (Haliotis asinina) (Ph.D. thesis). Institut Pertanian Bogor.

Forslund K., Sunagawa S., Coelho L.P., & Bork P. (2014). Metagenomic insights into the human gut resistome and the forces that shape it, Bioessays, 36: 316-329, DOI: 10.1002/bies.201300143.

Goldstein B.P. (2014). Resistance to rifampicin: a review. J Antibiotics (Tokyo) 67:625–630, DOI: 10.1038/ja.2014.107.

Hai N.V. (2015). The Use of Probiotics in Aquaculture; A Review Article, Journal of Applied Microbiology, 119: 917-935, DOI: 10.1111/jam-12886.

Hayati H., Dirgayusa I.G.N.P., & Puspitha N.L.P.R. (2018). Laju Pertumbuhan Kerang Abalon Haliotis squamata Melalui Budidaya IMTA (Integrated Multi Trophic Aquaculture) di Pantai Geger, Nusa Dua, Kabupaten Badung, Provinsi Bali, Journal of Marine and Aquatic Sciences, 4: 253-262

Hu Q., Fang, Y., Zhu, J., Xu, W., & Zhu, K. (2021). Characterization of Bacillus Species from Market Foods in Beijing, China, Journal of Processes, 9(866): 1-12, DOI: 10.3390/pr9050866.

Jeon, S.J., Yang, Son S.H., Kim W.S., Lee N.K., & Park H.D. (2018). Evaluation of probiotic Bacillus subtilis P229 isolatd H.L. from cheonggukjang and its application in soybean fermentation, Food Science and Technology, DOI: 10.1016/j.lwt.2018.06.054.

Karki, G. (2020). Measurement of bacterial growth using UV spectrophotometer. https://www.onlinebiologynotes.com/measurement-of-bacterial-growth-using-uv-spectrophotometer/

Krause K.M., Serio A.W, Kane T.R. & Connolly L.E. (2016). Aminoglycosides: An Overview, Cold Spring Harbor Persfektive in Medicine, pp 3-15 http://perspectivesinmedicine.cshlp.org/content/6/6/a027029.full.pdf+html

Kuebutornye F.K.A., Abarike E.D., Lu Y., Hlordzi V., Sakyi M.E., Afriyie G., Wang Z., Li, Y., & Xie C.X. (2020). Mechanisms and the Role of Probiotic Bacillus in Mitigating Fish Pathogens in Aquaculture, Fish Physiol Biochem, 1: 1-23, DOI: 10.1007/s10695-019-00754-y.

Kusmarwati A., Yennie, Y., & Indriati N. (2017). Resistensi Antibiotik Pada Vibrio parahaemolyticus dari Udang Vaname spp. Asal Pantai Utara Jawa untuk Pasar Ekspor, JPB Kelautan dan Perikanan, 12(2): 91-106, DOI: 10.15578/jpbkp.v12i2.352.

Lara-Flores, M. (2011). The Use of Probiotic in Aquaculture; an Overview, International Research Journal of Microbiology, 2: 471-478.

Lee N.K., Kim W.K., & Park H.D. (2019). Bacillus Strains as Human Probiotics: Characterization, Safety, Microbiome, and Probiotic Carrier, Food Science Biotechnol, 2019, DOI: 10.1007/s10068-019-00691-9

Maier R.M. & Pepper L. (2015). Review of Basic Microbiological Concepts, Chapter 3-Bacterial Growth, Environmental Microbiology (Third edition), 37-56, DOI: 10.10-16/B9780-12-394626-3.00003-X

Market Research Report (2018). Probiotics market size, share & trends analysis report by application (food & beverages, dietary supplements, animal feed), by end-use, by region, and segment forecast 2018-2024, Diakses melalui http://www.grandview-research.com/ industry analysis/probiotics-market, pada tanggal 29 November 2021 pukul 22.00 WITA.

McPherson R.A., & Pincus M.R. (2011). Henry's Clinical Diagnosis and Management by Laboratory Methods 22nd Edition, Elsevier Saunders, New York

Merrifield D.L., Dimitroglou A., Foey A., Davies A.S.J., Baker R.T.M., Bogwald J., Castex M., & Ringo E. (2010). Review: the Current Status and Future Focus of Probiotic and Prebiotic Application for Salmonids, Aqua-culture, 302: 1-18, DOI: 10.1016/j.aquaculture.2010.02.007.

Mingmongkolchai, & Panbangred W. (2017). Bacillus probiotics: an alternative to antibiotics for livestock production, Journal S.of Applied Microbiology, 124: 1334-1346, DOI: 10.1111/jam.13690.

Monica W.S., Mahatmi, H., & Besung K. (2013). Pola Resistensi Salmonella typhi yangdiisolasi dari Ikan Serigala (Hoplias malabaricus) terhadap Antibiotik, Jurnal Ilmu dan Kesehatan Hewan, 1(2): 64-69.

Mosaei H., & Harbottle J. (2019). Mechanisms of Antibiotics Inhibiting Bacterial RNA polymerase, Biochem Sociaty Transaction, 47: 339–350, DOI: 10.1042/B-ST20180499.

Mosaei H. & Zenkin N. (2020). Inhibition of RNA Polymerase by Rifampicin and Rifamycin-Like Molecules, American society of Microbiology, vol 9(1), 27 April 2020, DOI :https://doi.org/10.1128/ecosalplus.ESP-0017-2019

Myers A.G. & Clark R.B. (2021). Discovery of Macrolide Antibiotics Effective against Multi-Drug Resistant Gram-Negative Pathogens, Accounts of Chemical Research XXXX(2), Januari, 2021, DOI:10.1021/acs.accounts.1c00020

Nurhajati T., Soepranianondo, K., & Lokapirnasari, W.P. (2016). Uji Aktivitas Pertumbuhan Enterobacter cloacae Selulolitik Aerob Rumen-1 Isolat Asal Limbah Cairan Rumen Sapi Peranakan Ongole, Jurnal Veteriner, 17(3) : 383-388, DOI : 10.19087/jveteriner-2016.17.3.383.

Pelczar M.J. & Chan E.C.S. (2013). Dasar - Dasar Mikrobiologi, UI Press: Jakarta, pp 43-55.

Permadi A., Izza M.A., Cahyo K., & Al-Kholif M. (2018) Penggunaan Probiotik Dalam Budidaya Ternak, Abadimas Adi Buana, 2(1):5-10, DOI: 10.36456/abadimas.v2.i1.a1616.

Praja D.I. (2011). the Miracle of Probiotics, DIVA Press: Yogyakarta

Rolfe M.D., Rice C.J., Lucchini S., Pin C., Thompson A., Cameron A.D., Alston M., Stringer M.F., Betts R.P., Baranyi J., & Peck M.W. (2012). Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation, Journal of Bacteriology, 194(3): 686-701, DOI: 10.1128/JB.06112-11.

Romich J.A. (2010). Fundamentals of Pharmacology for Veterinary Technicians, 2nd Ed, Delmar Cencage Learning, New York, Amerika Serikat.

Rosmania & Yanti F. (2020). Perhitungan jumlah bakteri di Laboratorium Mikrobiologi menggunakan pengembangan metode Spektrofotometri, Jurnal Penelitian Sains, 22(2): 76-86

Sánchez, S., & Demain A.L. (2015). Antibiotics: Current Innovations and Future Trends, Caister Academic Press, Norfolk, Inggris.

Sari K.D.P., Santoso, Efendi E., & Harpeni E. (2017). Potensi Penggunaan Media Teknis Sebagai Pengganti Media Sea Water L.Complete (SWC) untuk Mendukung Pertumbuhan Bakteri Bacillus sp. D2.2, Jurnal Sains Tekologi Akuakultur, 1(2): 95-103.

Seniati, Marbiah, & Irham, A. (2019). Pengukuran Kepadatan Bakteri Vibrio harveyi Secara Cepat dengan Menggunakan Spectrofotometer, Agrokompleks, 19(2): 12-19.

Soltani M., Ghosh K., Hoseinifar S.H., Kumar V., Alan J., Lymbery, Roy S., & Ringø E. (2019). Genus Bacillus, promising probiotics in aquaculture: Aquatic animal origin, bio-active components, bioremediation and efficacy in fish and shellfish, Reviews in Fisheries Science & Aquaculture, 1-50, , DOI: 10-1080/23308249.2019.1597010

Vaquez-Laslops N. & Mankin A.S., (2018). How Macrolide Antibiotics Work, Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA, 2018, pp 3-16

Wachino J., & Arakawa Y. (2012). Exogenously Acquired 16S rRNA-methyl-transferases Found in Aminoglycoside Resistant Pathogenic Gram-negative Bacteria: An update, Drug Resist Update, 15: 133–148, , DOI: 10.1016/j-drup.2012.05.001.

Author Biographies

Faturrahman, Mataram University

biology mata air indonesia

Nurul Zulfa Fitriana, University of Mataram

Sarkono, University of Mataram

Ernin Hidayati, University of Mataram

License

Copyright (c) 2023 Faturrahman, Nurul Zulfa Fitriana, Sarkono, Ernin Hidayati

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Journal of Science and Science Education, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Attribution 4.0 International (CC BY 4.0). This license allows authors to use all articles, data sets, graphics and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Journal of Science and Science Education.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).